Cellular magnesium acquisition: an anomaly in embryonic cation homeostasis.

Exp Mol Pathol

Department of Pathology and Laboratory Medicine, University of Tennessee, Memphis, 930 Madison Avenue, Suite 599, Memphis, TN 38163, USA.

Published: October 2007

The intracellular dominance of magnesium ion makes clinical assessment difficult despite the critical role of Mg(++) in many key functions of cells and enzymes. There is general consensus that serum Mg(++) levels are not representative of the growing number of conditions for which magnesium is known to be important. There is no consensus method or sample source for testing for clinical purposes. High intracellular Mg(++) in vertebrate embryos results in part from interactions of cations which influence cell membrane transport systems. These are functionally competent from the earliest stages, at least transiently held over from the unfertilized ovum. Kinetic studies with radiotracer cations, osmolar variations, media lacking one or more of the four biological cations, Na(+), Mg(++), K(+), and Ca(++), and metabolic poison 0.05 mEq/L NaF, demonstrated that: (1) all four cations influence the behavior of the others, and (2) energy is required for uptake and efflux on different time scales, some against gradient. Na(+) uptake is energy dependent against an efflux gradient. The rate of K(+) loss is equal with or without fluoride, suggesting a lack of an energy requirement at these stages. Ca(++) efflux took twice as long in the presence of fluoride, likely due in part to intracellular binding. Mg(++) is anomalous in that early teleost vertebrate embryos have an intracellular content exceeding the surrounding sea water, an isolated unaffected yolk compartment, and a clear requirement for energy for both uptake and efflux. The physiological, pathological, and therapeutic roles of magnesium are poorly understood. This will change: (1) when (28)Mg is once again generally available at a reasonable cost for both basic research and clinical assessment, and (2) when serum or plasma levels are determined simultaneously with intracellular values, preferably as part of complete four cation profiles. Atomic absorption spectrophotometry, energy-dispersive x-ray analysis, and inductively coupled plasma emission spectroscopy on sublingual mucosal and peripheral blood samples are potential methods of value for coordinated assessments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexmp.2007.03.007DOI Listing

Publication Analysis

Top Keywords

clinical assessment
8
vertebrate embryos
8
cations influence
8
uptake efflux
8
intracellular
5
mg++
5
cellular magnesium
4
magnesium acquisition
4
acquisition anomaly
4
anomaly embryonic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!