Human mesenchymal stem cells (hMSCs) are able to both self-replicate and differentiate into a variety of cell types. Fibroblast growth factor-2 (FGF-2) stimulates the growth of hMSCs in vitro, but its mechanisms have not been clarified yet. In this study, we investigated whether cellular senescence was involved in the stimulation of hMSCs growth by FGF-2 and the expression levels of transforming growth factor-beta1 and -beta2 (TGF-betas). Because hMSCs were induced cellular senescence due to long-term culture, FGF-2 decreased the percentage of senescent cells and suppressed G1 cell growth arrest through the suppression of p21(Cip1), p53, and p16(INK4a) mRNA expression levels. Furthermore, the levels of TGF-betas mRNA expression in hMSCs were increased by long-term culture, but FGF-2 suppressed the increase of TGF-beta2 mRNA expression due to long-term culture. These results suggest that FGF-2 suppresses the hMSCs cellular senescence dependent on the length of culture through down-regulation of TGF-beta2 expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2007.05.067 | DOI Listing |
Sci Rep
December 2024
Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
High glucose (HG) induced endothelial senescence is related to endothelial dysfunction and cardiovascular complications in diabetic patients. Humanin, a member of mitochondrial derived peptides (MDPs), is thought to contribute to aging-related cardiovascular protection. The goal of the study is to explore the pathogenesis of HG-induced endothelial senescence and potential anti-senescent effects of Humanin.
View Article and Find Full Text PDFBiogerontology
December 2024
Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
The First College of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
The Y-box binding protein 1 (YBX1) is a multifunctional protein with a wide range of roles in cell biology. It plays a crucial role in immune modulation, senescence, and disease progression. This review presents a comprehensive analysis of the specific functions and mechanisms of YBX1 in these areas.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia.
Modern radiotherapy utilizes a broad range of sources of ionizing radiation, both low-dose-rate (LDR) and high-dose-rate (HDR). However, the mechanisms underlying specific dose-rate effects remain unclear, especially for corpuscular radiation. To address this issue, we have irradiated human epidermoid carcinoma A431 cells under LDR and HDR regimes.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan.
Oncogene-induced senescence (OIS) is a form of cellular senescence triggered by oncogenic signaling and, potentially, by infection with oncogenic viruses. The role of senescence, along with its associated secretory phenotype, in the development of cervical cancer remains unclear. Additionally, the expression of the senescence-associated secretory phenotype (SASP) has not yet been explored in cervical premalignant lesions infected by the Human Papilloma Virus (HPV).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!