Size reduction of the high energy materials (HEM's) by conventional methods (mechanical means) is not safe as they are very sensitive to friction and impact. Modified crystallization techniques can be used for the same purpose. The solute is dissolved in the solvent and crystallized via cooling or is precipitated out using an antisolvent. The various crystallization parameters such as temperature, antisolvent addition rate and agitation are adjusted to get the required final crystal size and morphology. The solvent-antisolvent ratio, time of crystallization and yield of the product are the key factors for controlling antisolvent based precipitation process. The advantages of cavitationally induced nucleation can be coupled with the conventional crystallization process. This study includes the effect of the ultrasonically generated acoustic cavitation phenomenon on the solvent antisolvent based precipitation process. CL20, a high-energy explosive compound, is a polyazapolycyclic caged polynitramine. CL-20 has greater energy output than existing (in-use) energetic ingredients while having an acceptable level of insensitivity to shock and other external stimuli. The size control and size distribution manipulation of the high energy material (CL20) has been successfully carried out safely and quickly along with an increase in the final mass yield, compared to the conventional antisolvent based precipitation process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2007.03.011 | DOI Listing |
Dalton Trans
January 2025
State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
Formamidinium lead triiodide (FAPbI) has received significant attention in the field of perovskite solar cells (PSCs) owing to its excellent optoelectronic properties and high thermal stability. However, the photoactive α-FAPbI perovskites are highly susceptible to degradation into non-perovskite δ-FAPbI phases, especially under humid conditions, which severely diminishes the device performance of FAPbI PSCs. Here, we propose an interfacial seeding strategy for regulating crystallization and stabilizing α-FAPbI perovskites in humid air.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30050, Taiwan, ROC.
Here, we report the design, synthesis, and comprehensive characterization of the bis-cholesterol supramolecular gelator, which contains photochromic stiff-stilbene as a bridging unit. The -isomer of stiff-stilbene bridged bis-cholesterol (-) was first synthesized with a systematic design, which can be further converted into its -isomer (-) with a high degree of efficiency (ca. 100%) upon exposure to 385 nm UV light.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing, China.
This study utilized deep eutectic solvents (DES) based on choline chloride/lactic acid (ChCl/LA) to deconstruct coconut fibers. The effects of DES with different temperatures and molar ratios on the yield of lignin, recovery rate of residues, structural changes in lignin and solid residues, and saccharification efficiency were investigated. The results showed that acidic DES treatment effectively deconstructed the coconut fibers, resulting in a high lignin yield of 68.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China.
Dark current density, a critical parameter in perovskite photodetectors (PPDs), largely depends on the quality of the perovskite film. Herein, we introduce a new small molecule in antisolvent strategy to enhance perovskite film quality during the crystallization of Cs(FAMA)Pb(IBr). COTIC-4Cl, an N-type narrow bandgap nonfullerene small molecule with specific functional group, could strongly bind to the uncoordinated Pb in the perovskite with assistance of antisolvent, enabling rapid supersaturation of perovskite solution and form dense structures under low-temperature annealing.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China. Electronic address:
Zein-based nanoparticles (NPs) have attracted considerable attention as potential delivery systems for bioactive compounds. However, their application has been limited by poor stability and redispersibility. In this study, we addressed these challenges by fabricating zein nanocarriers using branching structural fructo-oligosaccharides (P-FOS) and sodium caseinate (NaCas) as costabilizers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!