The behavioral actions of lithium in rodent models: leads to develop novel therapeutics.

Neurosci Biobehav Rev

The Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Program, National Institute of Mental Health, NIH, HHS, Bldg 35, Rm 1C-912, 35 Convent Drive, Bethesda, MD 20892 3711, USA.

Published: November 2007

For nearly as long as lithium has been in clinical use for the treatment of bipolar disorder, depression, and other conditions, investigators have attempted to characterize its effects on behaviors in rodents. Lithium consistently decreases exploratory activity, rearing, aggression, and amphetamine-induced hyperlocomotion; and it increases the sensitivity to pilocarpine-induced seizures, decreases immobility time in the forced swim test, and attenuates reserpine-induced hypolocomotion. Lithium also predictably induces conditioned taste aversion and alterations in circadian rhythms. The modulation of stereotypy, sensitization, and reward behavior are less consistent actions of the drug. These behavioral models may be relevant to human symptoms and to clinical endophenotypes. It is likely that the actions of lithium in a subset of these animal models are related to the therapeutic efficacy, as well the side effects, of the drug. We conclude with a brief discussion of various molecular mechanisms by which these lithium-sensitive behaviors may be mediated, and comment on the ways in which rat and mouse models can be used more effectively in the future to address persistent questions about the therapeutically relevant molecular actions of lithium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2150568PMC
http://dx.doi.org/10.1016/j.neubiorev.2007.04.002DOI Listing

Publication Analysis

Top Keywords

actions lithium
12
lithium
6
behavioral actions
4
lithium rodent
4
models
4
rodent models
4
models leads
4
leads develop
4
develop novel
4
novel therapeutics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!