In the current study, robust boosting partial least squares (RBPLS) regression has been proposed to model the activities of a series of 4H-1,2,4-triazoles as angiotensin II antagonists. RBPLS works by sequentially employing PLS method to the robustly reweighted versions of the training compounds, and then combing these resulting predictors through weighted median. In PLS modeling, an F-statistic has been introduced to automatically determine the number of PLS components. The results obtained by RBPLS have been compared to those by boosting partial least squares (BPLS) repression and partial least squares (PLS) regression, showing the good performance of RBPLS in improving the QSAR modeling. In addition, the interaction of angiotensin II antagonists is a complex one, including topological, spatial, thermodynamic and electronic effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2007.04.031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!