Ultra-low contact resistance of epitaxially interfaced bridged silicon nanowires.

Nano Lett

Integrated NanoDevices and Systems Research, Department of Electrical and Computer Engineering, University of California, Davis, Davis, California 95616, USA.

Published: June 2007

Laterally oriented single-crystal silicon nanowires are epitaxially grown between highly doped vertically oriented silicon electrodes in the form of nanobridges. Resistance values extracted from the current-voltage measurements for a large number of nanobridges with varying lengths and diameters are used to propose a model which highlights the relative contribution of the contact resistance to the total resistance for nanowire-based devices. It is shown that the contact resistance depends on the effective conducting cross-section area and hence is influenced by the presence of a surface depletion layer. On the basis of our measured data and constructed model, we estimated the specific contact resistance to be in the range 3.74 x 10(-6) to 5.02 x 10(-6) Omega cm2 for our epitaxial interfacing method. This value is at least an order of magnitude lower than that of any known contact made to nanowires with an evaporated metal film, a common method for integrating semiconductor nanowires in devices and circuits.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl070325eDOI Listing

Publication Analysis

Top Keywords

contact resistance
16
silicon nanowires
8
resistance
6
ultra-low contact
4
resistance epitaxially
4
epitaxially interfaced
4
interfaced bridged
4
bridged silicon
4
nanowires
4
nanowires laterally
4

Similar Publications

Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice.

View Article and Find Full Text PDF

Knowledge of gym goers on myths and truths in resistance training.

Sci Rep

January 2025

Department of Movement Science, Institute of Sports Science, University of Klagenfurt, Klagenfurt, Austria.

Over the last decades, resistance training (RT) has experienced a surge in popularity, and compelling evidence underpins its beneficial effects on health, well-being, and performance. However, sports and exercise research findings may translate poorly into practice. This study investigated the knowledge of Austrian gym-goers regarding common myths and truths in RT.

View Article and Find Full Text PDF

Poly(1,3-dioxolane)-Modified Li1.3Al0.3Ti1.7(PO4)3 as the Electrolyte for Enhanced Solid Lithium Metal Batteries.

Chemistry

January 2025

Sichuan University, School of Chemical Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China, 610065, Chendu, CHINA.

Li1.3Al0.3Ti1.

View Article and Find Full Text PDF

Molecular junctions (MJs) are celebrated nanoelectronic devices for mimicking conventional electronic functions, including rectifiers, sensors, wires, switches, transistors, negative differential resistance, and memory, following an understanding of charge transport mechanisms. However, capacitive nanoscale molecular junctions are rarely seen. The present work describes electrochemically (E-Chem) grown covalently attached molecular thin films of 10, 14.

View Article and Find Full Text PDF

Background: Prosthetic joint infection is a serious complication that can arise after total joint replacement surgery. When bacteria colonise an orthopaedic implant, they form biofilms that protect them from their environment, making them difficult to remove. Treatment is further complicated by a global rise of antimicrobial resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!