Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aminoisobutyric acid (Aib) is a synthetic amino acid known to favor the formation of 3(10) helical structures in condensed phases, namely, crystals. The intrinsic character of these helicogenic properties has been investigated on the Ac-Aib-Phe-Aib-NH2 molecule under isolated conditions, namely, in the gas phase, both experimentally by double-resonance IR/UV spectroscopy and theoretically by quantum chemistry. A convergent set of evidence, based on energetic, IR, and UV spectroscopic data as well as on analogies with the similar peptide Ac-Ala-Phe-Ala-NH2 previously studied, enables us to conclude the formation of an incipient 310 helix in these isolated systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp070681l | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!