Learning is accompanied by modulation of postsynaptic signal transduction pathways in neurons. Although the neuronal protein kinase cyclin-dependent kinase 5 (Cdk5) has been implicated in cognitive disorders, its role in learning has been obscured by the perinatal lethality of constitutive knockout mice. Here we report that conditional knockout of Cdk5 in the adult mouse brain improved performance in spatial learning tasks and enhanced hippocampal long-term potentiation and NMDA receptor (NMDAR)-mediated excitatory postsynaptic currents. Enhanced synaptic plasticity in Cdk5 knockout mice was attributed to reduced NR2B degradation, which caused elevations in total, surface and synaptic NR2B subunit levels and current through NR2B-containing NMDARs. Cdk5 facilitated the degradation of NR2B by directly interacting with both it and its protease, calpain. These findings reveal a previously unknown mechanism by which Cdk5 facilitates calpain-mediated proteolysis of NR2B and may control synaptic plasticity and learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3910113PMC
http://dx.doi.org/10.1038/nn1914DOI Listing

Publication Analysis

Top Keywords

synaptic plasticity
12
cyclin-dependent kinase
8
knockout mice
8
learning
5
cdk5
5
kinase governs
4
governs learning
4
synaptic
4
learning synaptic
4
plasticity control
4

Similar Publications

Peripuberty is a significant period of neurodevelopment with long-lasting effects on the brain and behavior. Blocking type 1 corticotropin-releasing factor receptors (CRFR1) in neonatal and peripubertal rats attenuates detrimental effects of early-life stress on neural plasticity, behavior, and stress hormone action, long after exposure to the drug has ended. CRFR1 antagonism can also impact neural and behavioral development in the absence of stressful stimuli, suggesting sustained alterations under baseline conditions.

View Article and Find Full Text PDF

Introduction: Intermittent fasting (IF) has emerged as a potential lifestyle intervention for mitigating cognitive decline and enhancing brain health in individuals with mild to major neurocognitive disorders. Unlike preventive strategies, this review evaluates IF as a therapeutic approach, focusing on its effects on neuroplasticity, inflammation, and cognitive function.

Methods: A narrative review was conducted using a comprehensive PubMed search with the terms "intermittent fasting AND neurocognition" and "intermittent fasting AND neuroplasticity".

View Article and Find Full Text PDF

Promotion of cellular differentiation and DNA repair potential in brain cancer cells by Shankhpushpi, (Clitoria ternatea L.) with rasayana properties in vitro.

J Ayurveda Integr Med

January 2025

Centre for Ayurvedic Biology, Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India. Electronic address:

Background: Brain ageing is accompanied by the diminution of neuronal plasticity, which is correlated with the inability to respond to loss of memory, various stress-induced stimuli, and increased risk of neurodegenerative disorders. In the recent past, plant based herbal medicines are of interest over synthetic drugs for therapeutic purposes due to lower side effects. The Indian traditional medicine Ayurveda describes several herbal remedies, such as rasayana (elixirs for rejuvenation), to treat many age-related diseases.

View Article and Find Full Text PDF

Combining therapeutic strategies with rehabilitation improves motor recovery in animal models of spinal cord injury: A systematic review and meta-analysis.

Ann Phys Rehabil Med

January 2025

Department of Rehabilitation Medicine, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan; Department of Rehabilitation Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. Electronic address:

Background: Despite the lack of clinically validated strategies for treating spinal cord injury (SCI), combining therapeutic strategies with rehabilitation is believed to promote recovery of motor function; however, current research findings are inconsistent.

Objectives: To explore whether combination therapy involving therapy and rehabilitative training (CIRT) has a synergistic effect on motor function recovery in animal models of SCI.

Methods: We conducted a systematic review and meta-analysis of studies identified in a keyword search of 6 databases and extracted open-field motor scores from the Basso Mouse Scale (BMS) and the Basso, Beattie, and Bresnahan Locomotor Rating Scale (BBB) for meta-analysis using a weighted mean difference (WMD) and 95 % CI.

View Article and Find Full Text PDF

Presently, the in vitro recording of intracellular neuronal signals on microelectrode arrays (MEAs) requires complex 3D nanostructures or invasive and approaches such as electroporation. Here, it is shown that laser poration enables intracellular coupling on planar electrodes without damaging neurons or altering their spontaneous electrophysiological activity, allowing the process to be repeated multiple times on the same cells. This capability distinguishes laser-based neuron poration from more invasive methods like electroporation, which typically serve as endpoint measurement for cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!