Tumor necrosis factor alters cytoskeletal organization and barrier function of endothelial cells.

Int Arch Allergy Appl Immunol

Dipartimento di Biochimica e Biofisica, 1 Facoltà di Medicina, Università di Napoli, Italia.

Published: January 1992

Treatment of human umbilical cord vein endothelial cells with tumor necrosis factor results in marked changes in cell shape and cytoskeletal organization. After 4 h of treatment, these cells loose reciprocal contacts with the formation of intercellular gaps. This retraction reaches a maximum after 6 h when most stress fibers staining for F-actin disappear and vinculin becomes diffused in the cytoplasm. Such changes spontaneously reverse after 24 h in the presence of tumor necrosis factor or after 2 h of incubation in fresh medium. After treatment with tumor necrosis factor, endothelial monolayers become permeable to albumin because of gaps that form between cells. Normal human serum, plasma alpha 1-proteinase inhibitor and an anti-inflammatory peptide that decrease synthesis of platelet-activating factor inhibit the changes induced by tumor necrosis factor. Furthermore, receptor antagonists of platelet-activating factor have the same effect. These findings suggest that platelet-activating factor is a secondary mediator responsible for the changes in cell shape and cytoskeletal organization, and for the leakiness of endothelial monolayers.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000235539DOI Listing

Publication Analysis

Top Keywords

tumor necrosis
20
necrosis factor
20
cytoskeletal organization
12
platelet-activating factor
12
factor
8
endothelial cells
8
changes cell
8
cell shape
8
shape cytoskeletal
8
endothelial monolayers
8

Similar Publications

The reduction in alveolar ridge height and width after tooth extraction poses a substantial challenge for dental implant restoration. This study aimed to observe the roles of S100A8 in the inflammatory response and bone resorption following tooth extraction. Rat mandibular second molars were extracted.

View Article and Find Full Text PDF

Background: Acute systemic inflammation affects many organs and it occurs in a wide range of conditions such as acute lung injury (ALI). Inflammation-triggered oxidative pathways together with the caspase activation seen in ALI, result in apoptosis. Dapagliflozin (DPG) is an agent that is known to have oxidative stress-reducing and anti-inflammatory effects in many tissues.

View Article and Find Full Text PDF

Purpose: Urinary cytokine changes may serve as biomarkers to assess treatment outcomes for interstitial cystitis/bladder pain syndrome (IC/BPS). This study analyzed the changes in urinary cytokines following various bladder therapies and explored their clinical significance in therapeutic mechanisms.

Methods: A total of 122 patients with IC/BPS treated with platelet-rich plasma (PRP), botulinum toxin-A (BoTN-A), hyaluronic acid (HA), or low-energy shock wave (LESW) were evaluated.

View Article and Find Full Text PDF

Secondary brain damageafter traumatic brain injury (TBI) involves oxidative stress, neuroinflammation, apoptosis, and necroptosis and can be reversed by understanding these molecular pathways. The objective of this study was to examine the impact of tasimelteon (Tasi) administration on brain injury through the nuclear factor erythroid 2-related factor 2 (NRF-2)/heme oxygenase-1 (HO-1) and receptor-interacting protein kinase 1 (RIPK1)/receptor-interacting protein kinase 3 (RIPK3)/mixed lineage kinase domain-like (MLKL) pathways in rats with TBI. Thirty-two male Wistar albino rats weighing 300-350 g were randomly divided into four groups: the control group, trauma group, Tasi-1 group (trauma + 1 mg/kg Tasi intraperitoneally), and Tasi-10 group (trauma + 10 mg/kg Tasi intraperitoneally).

View Article and Find Full Text PDF

Tumor necrosis factor-α (TNF-α) induces a multitude of actions and consequences in bone and cartilage resorption and immune response augmentation. In this research, we aimed to investigate the effects of TNF-α on osteogenesis parameters in newborn mice. Experimental research was conducted on 42 pregnant mice, dividing into seven groups as follows: control (no injection), vehicle 1 (PBS injection on 7-9th pregnancy days (PD)), vehicle 2 (PBS injection during pregnancy), experimental 1 (injection of 10 ng/kg of TNF-α on 7-9th PD), experimental 2 (injection of 100 ng/kg of TNF-α on 7-9th PD), experimental 3 (injection of 10 ng/kg of TNF-α during pregnancy) and experimental 4 (injection of 100 ng/kg of TNF-α during pregnancy).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!