The vasculature develops primarily through two processes, vasculogenesis and angiogenesis. Although much work has been published on angiogenesis, less is known of the mechanisms regulating the de novo formation of the vasculature commonly called vasculogenesis. Human embryonic stem cells (hESC) have the capability to produce all of the cells of the body and have been used as in vitro models to study the molecular signals controlling differentiation and vessel assembly. One such regulatory molecule is bone morphogenetic protein-4 (BMP4), which is required for mesoderm formation and vascular/hematopoietic specification in several species. However, hESC grown in feeder-free conditions and treated with BMP4 differentiate into a cellular phenotype highly expressing a trophoblast gene profile. Therefore, it is unclear what role, if any, BMP4 plays in regulating vascular development in hESC. Here we show in two National Institutes of Health-registered hESC lines (BG02 and WA09) cultured on a 3D substrate of Matrigel in endothelial cell growth medium-2 that the addition of BMP4 (100 ng/ml) for 3 days significantly increases the formation and outgrowth of a network of cells reminiscent of capillary-like structures formed by mature endothelial cells (P<0.05). Analysis of the expression of 45 genes by quantitative real time-polymerase chain reaction on a low-density array of the entire culture indicates a rapid and significant downregulation of pluripotent and most ectodermal markers with a general upregulation of endoderm, mesoderm, and endothelial markers. Of the genes assayed, BMPR2 and RUNX1 were differentially affected by exposure to BMP4 in both cell lines. Immunocytochemistry indicates the morphological structures formed were negative for the mature endothelial markers CD31 and CD146 as well as the neural marker SOX2, yet positive for the early vascular markers of endothelium (KDR, NESTIN) and smooth muscle cells (alpha-smooth muscle actin [alpha SMA]). Together, these data suggest BMP4 can enhance the formation and outgrowth of an immature vascular system.
Download full-text PDF |
Source |
---|
J Vis Exp
January 2025
Barts Cancer Institute, Queen Mary University of London;
Erythropoiesis, a remarkably dynamic and efficient process responsible for generating the daily quota of red blood cells (approximately 280 ± 20 billion cells per day), is crucial for maintaining individual health. Any disruption in this pathway can have significant consequences, leading to health issues. According to the World Health Organization, an estimated 25% of the global population presents symptoms of anemia.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University;
Umbilical cord-derived mesenchymal stromal/stem cells (UC-MSCs) present low immunogenicity and potent immunomodulatory effects for treating various diseases. Human UC-MSCs are a heterogeneous population consisting of three main subpopulations with different cell shapes, proliferation rates, differentiation abilities, and immune regulatory functions. Previously, BAMBIMFGE8 UC-MSCs, the first subgroup successfully isolated from UC-MSCs were found to fail to alleviate lupus nephritis.
View Article and Find Full Text PDFHistochem Cell Biol
January 2025
Departments of Obstetrics and Gynecology, School of Medicine, Akdeniz University, Antalya, Turkey.
Preeclampsia (PE) is a severe placental complication occurring after the 20th week of pregnancy. PE is associated with inflammation and an increased immune reaction against the fetus. TYRO3 and PROS1 suppress inflammation by clearing apoptotic cells.
View Article and Find Full Text PDFJ Cell Mol Med
February 2025
Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China.
Reduced trophoblast migration and invasion contribute to unexplained recurrent spontaneous abortion (URSA). Aquaporin 3 (AQP3) plays a crucial role in facilitating trophoblast migration and invasion during early pregnancy through fetal-maternal crosstalk. This study aimed to comprehensively investigate the mechanism involving AQP3 and its modulatory effects on human extravillous trophoblast (HTR-8/SVneo cells) migration and invasion.
View Article and Find Full Text PDFCureus
December 2024
Department of Surgery, Vardhman Mahavir Medical College (VMMC) & Safdarjung Hospital, New Delhi, IND.
Ectopic breast tissue (EBT) represents a congenital anomaly caused by incomplete regression of mammary ridges at the time of embryonic development. Typically, EBT presents along the mammary line, although usually in the axillary region, it has been located occasionally in unusual sites such as the vulva. Though relatively rare, it is generally subject to a wide range of pathologies that afflict normal breast tissue, encompassing both benign and malignant transformations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!