Conformational dynamics in loop swap mutants of homologous fibronectin type III domains.

Biophys J

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.

Published: October 2007

Fibronectin type III (FN-III) domains are autonomously folded modules found in a variety of multidomain proteins. The 10th FN-III domain from fibronectin (fnFN10) and the 3rd FN-III domain from tenascin-C (tnFN3) have 27% sequence identity and the same overall fold; however, the CC' loop has a different pattern of backbone hydrogen bonds and the FG loop is longer in fnFN10 compared to tnFN3. To examine the influence of length, sequence, and context in determining dynamical properties of loops, CC' and FG loops were swapped between fnFN10 and tnFN3 to generate four mutant proteins and backbone conformational dynamics on ps-ns and mus-ms timescales were characterized by solution (15)N-NMR spin relaxation spectroscopy. The grafted loops do not strongly perturb the properties of the protein scaffold; however, specific effects of the mutations are observed for amino acids that are proximal in space to the sites of mutation. The amino acid sequence primarily dictates conformational dynamics when the wild-type and grafted loop have the same length, but both sequence and context contribute to conformational dynamics when the loop lengths differ. The results suggest that changes in conformational dynamics of mutant proteins must be considered in both theoretical studies and protein design efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1965443PMC
http://dx.doi.org/10.1529/biophysj.106.100578DOI Listing

Publication Analysis

Top Keywords

conformational dynamics
20
dynamics loop
8
fibronectin type
8
type iii
8
fn-iii domain
8
length sequence
8
sequence context
8
mutant proteins
8
conformational
5
loop
5

Similar Publications

We report on the U-shaped folding of flexible guest molecules of medicinal interest upon their inclusion into macrocyclic cavity of p-sulfonato-calix[4]arene in aqueous media. Alexidine and pentamidine are FDA-approved drug compounds currently rediscovered as potent membrane-targeting antibiotic adjuvants helping restore antibiotic activity against multidrug resistant bacteria pathogens. We have adopted host-guest and crystal engineering approach to study these drugs with a view of potential supramolecular formulations and/or crystal forms.

View Article and Find Full Text PDF

Transition metals (e.g., Fe, Zn, Mn) are essential enzymatic cofactors in all organisms.

View Article and Find Full Text PDF

The increasing incidence of bacterial infections has led to rise in antimicrobial resistance (AMR), a significant concern in public health across the globe. Henceforth, there is an urgency to address the AMR catastrophe, including developing new antibiotics, promoting the appropriate use of existing antibiotics, and investing more in research and development. Development of potent antibiotic derivatives is the call of the day.

View Article and Find Full Text PDF

Microtubule plus-end tracking proteins (+TIPs) participate in nearly all microtubule-based cellular processes and have recently been proposed to function as liquid condensates. However, their formation and internal organization remain poorly understood. Here, we have study the phase separation of Bik1, a CLIP-170 family member and key +TIP involved in budding yeast cell division.

View Article and Find Full Text PDF

LARGE SCALE ENERGY DECOMPOSITION FOR THE ANALYSIS OF PROTEIN STABILITY.

Cell Stress Chaperones

January 2025

Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100 Pavia, Italy. Electronic address:

To carry out their functions in cells, proteins are required to fold into well-defined three-dimensional conformations. The stability of the folded state dictates several aspects of protein life, such as their evolution, interactions, and selection of structures that are ultimately linked to activity. Sequence mutations may change the stability profile and consequently impact structure and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!