We investigated the influence of a substituent and a Lewis base on boron upon the thermodynamic stability of metal complexes of borane-Lewis base adducts, [M(CO)5(eta1-BH(2)R.L)] (M=Cr, W) and [CpMn(CO)2(eta1-BH2R.L)], where R=Cl, I, m-C6H4F, Ph, H, Me, Et; L=PMe3, PPh3, NMe3, quinuclidine. In these compounds, the stability of the metal-borane linkage was enhanced by increasing the electron-releasing ability of the substituent on boron. A stronger base L additionally stabilized the complexes. The strength of the borane-metal interaction is thus mainly ascribed to the electron donation from the BH sigma orbital to metal rather than the back-donation into the BH sigma* orbital. This result supports the bonding model for the B-H-M linkage in the borane complexes suggested by MO calculations, where the borane-to-metal electron donation is predominant while the metal back-donation into the BH sigma* orbital is negligible. Such a stability trend of the borane complexes makes a sharp contrast to that of many silane and dihydrogen complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.200601883 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
Controlling materials' composition and structure to selectively adsorb rare earth elements (REE) is critical for better separations. Understanding how local electric potentials affect REE adsorption and how they can be modified via chemical substitution is of fundamental importance. We present calculated mean inner potentials for muscovite and phlogopite micas in excellent agreement with measured values of +10.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemistry, Western University, 1151 Richmond Street, London, ON, N8K 3G6, Canada.
This work addresses fundamental questions that deepen our understanding of secondary coordination sphere effects on carbon dioxide (CO) reduction using derivatized hydride analogues of the type, [Cp*Fe(diphosphine)H] (Cp* = CMe ) - a well-studied family of organometallic complex - as models. More precisely, we describe the general reactivity of [(Cp*-BR)Fe(diphosphine)H], which contains an intramolecularly positioned Lewis acid, and its cooperative reactivity with CO. Control experiments underscore the critical nature of borane incorporation for transforming CO to reduced products, a reaction that does not occur for unfunctionalized [Cp*Fe(diphosphine)H].
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and Advanced Materials, Henan Normal University, Xinxiang, Henan453007,China.
Borenium ions have attracted significant attention in organic transformations due to their strong Lewis acidity. The reported borenium ions are often stabilized by sterically demanding substituents and strong coordination bonds. Herein, we have synthesized a small steric borenium-equivalent NHBHOTf and subjected it to the exhaustive reduction of a carboxylic functional group to a methyl group, which shows broad functional group tolerance.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St. Andrews, KY16 9ST, U.K.
The [1,2]-rearrangement of allylic ammonium ylides is traditionally observed as a competitive minor pathway alongside the thermally allowed [2,3]-sigmatropic rearrangement. Concerted [1,2]-rearrangements are formally forbidden, with these processes believed to proceed through homolytic C-N bond fission of the ylide, followed by radical-radical recombination. The challenges associated with developing a catalytic enantioselective [1,2]-rearrangement of allylic ammonium ylides therefore lie in biasing the reaction pathway to favor the [1,2]-reaction product, alongside controlling a stereoselective radical-radical recombination event.
View Article and Find Full Text PDFDalton Trans
December 2024
Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt, Main, Germany.
Aluminum-doped polycyclic aromatic hydrocarbons (PAHs) are underexplored despite the broad applications of boron-containing PAHs in areas such as catalysis and optoelectronics. We disclose the donor-free, sterically unprotected 9-methyl-9-aluminafluorene (Me-AlFlu; 2), synthesized by heating a 9,9-dimethyl-9-stannafluorene and AlMe in hexanes. The compound is a dimer, (2), with -positioned Al substituents in the solid state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!