AI Article Synopsis

  • Researchers captured images of human umbilical vein endothelial cells (HUVECs) for analysis.
  • They studied how these cells change shape in response to the release of nitric oxide.
  • This is the first time these changes have been quantitatively recorded using scanning electrochemical microscopy.

Article Abstract

Images of Human umbilical vein endothelial cells (HUVECs) have been obtained and the regulation of cell morphology changes after nitric oxide release has been recorded and discerned quantitatively for the first time using scanning electrochemical microscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b701880kDOI Listing

Publication Analysis

Top Keywords

scanning electrochemical
8
electrochemical microscopy
8
imaging detection
4
detection morphological
4
morphological changes
4
changes single
4
single cells
4
cells secretion
4
secretion scanning
4
microscopy images
4

Similar Publications

High degree of fluorination for ether electrolytes has resulted in improved cycling stability of lithium metal batteries due to stable solid electrolyte interphase (SEI) formation and good oxidative stability. However, the sluggish ion transport and environmental concerns of high fluorination degree drive the need to develop less fluorinated structures. Here, we depart from the traditional ether backbone and introduce bis(2-fluoroethoxy)methane (F2DEM), featuring monofluorination of the acetal backbone.

View Article and Find Full Text PDF

5-Fluorouracil (5-Fu) is the third-most often used chemotherapeutic medication and has been scientifically demonstrated to be effective in treating solid tumors, including colorectal, stomach, cutaneous, and breast cancers. When used in excess, it accumulates toxic metabolites, which can have deadly and very harmful effects on people, including neurotoxicity and the induction of morbidity. Therefore, sensitive and rapid analytical techniques for detecting 5-Fu in human blood serum are needed to enhance chemotherapy and forecast the possible adverse effects of 5-Fu residues in the human body.

View Article and Find Full Text PDF

Electrochemical aptamer-based biosensors (E-aptasensors) are emerging platforms for point-of-care (POC) detection of complex biofluids. Human saliva particularly offers a noninvasive matrix and unprecedented convenience for detecting illicit drugs, such as cocaine. However, the sensitivity of cocaine E-aptasensors is significantly compromised in saliva.

View Article and Find Full Text PDF

The Coronavirus Disease 2019 (COVID-19) recently emerged as a life-threatening global pandemic that has ravaged millions of lives. The affected patients are known to frequently register numerous comorbidities induced by COVID-19 such as diabetes, asthma, cardiac arrest, hypertension, and neurodegenerative diseases, to name a few. The expensiveness and probability of false negative results of conventional screening tests often delay timely diagnosis and treatment.

View Article and Find Full Text PDF

One of the key technical challenges before the widespread adoption of proton exchange membrane fuel cells (PEMFCs) is increasing the durability of the platinum catalyst layer to meet a target of 8000 operating hours with only a 10% loss of performance. Carbon corrosion, one of the primary mechanisms of degradation in fuel cells, has attracted attention from researchers interested in solving the durability problem. As such, the development of catalyst supports to avoid this issue has been a focus in recent years, with interest in hydrophobic supports such as highly graphitized carbons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!