Leukemic cells exert immunosuppressive effects that interfere with dendritic cell (DC) function and hamper effective antileukemic immune responses. Here, we sought to enhance the immunogenicity of leukemic cells by loading them with the double-stranded (ds) RNA Toll-like receptor 3 (TLR3) ligand polyriboinosinic polyribocytidylic acid (poly(I:C)), mimicking viral infection of the tumor cells. Given the responsiveness of DC to TLR ligands, we hypothesized that the uptake of poly(I:C)-loaded leukemic cells by immature DC (iDC) would lead to DC activation. Primary acute myeloid leukemia (AML) cells and AML cell lines markedly responded to poly(I:C) electroporation by apoptosis, upregulation of TLR3 expression, enhanced expression of major histocompatibility complex (MHC) and costimulatory molecules and by production of type I interferons (IFN). Upon phagocytosis of poly(I:C)-electroporated AML cells, DC maturation and activation were induced as judged by an increased expression of MHC and costimulatory molecules, production of proinflammatory cytokines and an increase of T helper 1 (T(H)1)-polarizing capacity. These immune effects were suboptimal when AML cells were passively pulsed with poly(I:C), indicating the superiority of poly(I:C) transfection over pulsing. Our results demonstrate that poly(I:C) electroporation is a promising strategy to increase the immunogenicity of AML cells and to convert iDC into activated mature DC following the phagocytosis of AML cells.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.leu.2404763DOI Listing

Publication Analysis

Top Keywords

aml cells
20
leukemic cells
16
cells
11
polyic electroporation
8
mhc costimulatory
8
costimulatory molecules
8
molecules production
8
aml
6
polyic
5
proinflammatory response
4

Similar Publications

Caveolin-1 protects against liver injury and lipid accumulation in alcoholic fatty liver via ferroptosis resistance.

Mol Immunol

March 2025

Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China. Electronic address:

Alcoholic fatty liver (AFL) is one of the most common chronic liver diseases globally with complex and controversial pathogenesis. Recent evidence suggests that iron overload and lipid peroxidation are risk factors for AFL. Caveolin-1 (CAV1) is an important signal platform that can maintain lipid homeostasis during the development of non-alcoholic fatty liver.

View Article and Find Full Text PDF

Clinical management of acute myeloid leukemia (AML) poses significant challenges due to its poor prognosis and heterogeneous nature. Discovering new biomarkers is crucial for improving risk assessment and customizing treatment approaches. While leukocyte-specific transcript 1 (LST1) is implicated in inflammation and immune regulation, its function in AML remains ambiguous.

View Article and Find Full Text PDF

Outcome for acute myeloid leukemia (AML) patients aged >60 years is poor. Targeting the proteasome in AML is attractive, since leukemia stem cells demonstrate sensitivity to proteasome inhibition in preclinical models. Adults >60 years of age with newly diagnosed AML were enrolled.

View Article and Find Full Text PDF

Polo like kinase 1 (PLK1) is a serine/threonine kinase that plays an important role in multiple phases of the cell cycle, inhibiting its activity has been considered an effective treatment for acute myeloid leukemia (AML). Here, we reported a series of highly potent PLK1 inhibitors. Among them, compound WD6 was identified as the most promising PLK1 inhibitor, with an IC value of 0.

View Article and Find Full Text PDF

Donor Lymphocyte Infusion (DLI) is a crucial therapeutic strategy for relapsed myeloid malignancies post-allogeneic hematopoietic cell transplantation (allo-HCT), leveraging the graft-versus-leukemia (GvL) effect to restore immune control. While highly effective in chronic myeloid leukemia (CML), its efficacy in acute myeloid leukemia (AML) remains limited, with underlying mechanisms not fully understood. Recent research by Maurer and colleagues utilized cutting-edge technologies to dissect immune-leukemia interactions within the bone marrow niche, identifying a cytotoxic CD8+ T cell population as a key mediator of the anti-leukemic response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!