High-resolution structures of formate dehydrogenase from Candida boidinii.

Protein Sci

European Molecular Biology Laboratory, Hamburg, Germany.

Published: June 2007

The understanding of the mechanism of enzymatic recovery of NADH is of biological and of considerable biotechnological interest, since the essential, but expensive, cofactor NADH is exhausted in asymmetric hydrogenation processes, but can be recovered by NAD(+)-dependent formate dehydrogenase (FDH). Most accepted for this purpose is the FDH from the yeast Candida boidinii (CbFDH), which, having relatively low thermostability and specific activity, has been targeted by enzyme engineering for several years. Optimization by mutagenesis studies was performed based on physiological studies and structure modeling. However, X-ray structural information has been required in order to clarify the enzymatic mechanism and to enhance the effectiveness and operational stability of enzymatic cofactor regenerators in biocatalytic enantiomer synthesis as well as to explain the observed biochemical differences between yeast and bacterial FDH. We designed two single-point mutants in CbFDH using an adapted surface engineering approach, and this allowed crystals suitable for high-resolution X-ray structural studies to be obtained. The mutations improved the crystallizability of the protein and also the catalytic properties and the stability of the enzyme. With these crystal structures, we explain the observed differences from both sources, and form the basis for further rational mutagenesis studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2206666PMC
http://dx.doi.org/10.1110/ps.062741707DOI Listing

Publication Analysis

Top Keywords

formate dehydrogenase
8
candida boidinii
8
mutagenesis studies
8
x-ray structural
8
explain observed
8
high-resolution structures
4
structures formate
4
dehydrogenase candida
4
boidinii understanding
4
understanding mechanism
4

Similar Publications

Enzymatic asymmetric synthesis of l-phenylglycine by amino acid dehydrogenases has potential for industrial applications; however, this is hindered by their low catalytic efficiency toward high-concentration substrates. We identified and characterized a novel leucine dehydrogenase (LeuDH) with a high catalytic efficiency for benzoylformic acid via directed metagenomic approaches. Further, we obtained a triple-point mutant LeuDH-EER (D332E/G333E/L334R) with improved stability and catalytic efficiency through the rational design of distal loop 13.

View Article and Find Full Text PDF

How FocA facilitates fermentation and respiration of formate by .

J Bacteriol

January 2025

Institute for Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Saxony-Anhalt, Germany.

Formic acid is an important source of reductant and energy for many microorganisms. Formate is also produced as a fermentation product, e.g.

View Article and Find Full Text PDF

Selection of biofilm-inhibiting ssDNA aptamers against antibiotic-resistant Edwardsiella tarda by inhibition-SELEX and interaction with their binding proteins.

Int J Biol Macromol

January 2025

National Research and Development Center for Eel Processing Technology, Key Laboratory of Eel Aquaculture and Processing of Fujian Province, Fujian Provincial Engineering Research Center for Eel Processing Enterprise, Changle Juquan Food Co. Ltd., Fuzhou 350200, China.

Biofilms can increase bacterial resistance to antibiotic therapies. Edwardsiella tarda with biofilm is highly resistant to antibacterial treatment, especially for the antibiotic-resistant strain. In this study, we obtained biofilm-inhibiting aptamers against antibiotic-resistant E.

View Article and Find Full Text PDF

Physiological role of the FDH1 gene in methylotrophic yeast Komagataella phaffii and carbon recovery as formate during methylotrophic growth of the fdh1-deletion strain.

J Biosci Bioeng

January 2025

United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Preemptive Food Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan. Electronic address:

During methylotrophic growth of Komagataella phaffii, a large amount of carbon is lost as CO. In this study, we aimed to construct a recovery system for carbon atoms, which emit as CO along the methanol dissimilation pathway in the form of formate when using strain fdh1Δ, the deletion mutant of formate dehydrogenase gene (FDH1). Strain fdh1Δ showed a severe growth defect when using methanol as the sole carbon source.

View Article and Find Full Text PDF

Designing a microbial factory suited for plant chloroplast-derived enzymes to efficiently and green synthesize natural products: Capsanthin and capsorubin as examples.

Metab Eng

January 2025

State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Qingdao Key Laboratory of Food Biotechnology, Qingdao, 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao, 266404, PR China. Electronic address:

Specific cellular microenvironment, multi-enzyme complex and expensive essential cofactor make the biological manufacturing of plant chloroplast natural products (PCNPs) extremely challenging. The above difficulties have hampered the biosynthesis of capsanthin and capsorubin in the past 30 years. Here, we take capsanthin and capsorubin as examples to design an innovative microbial factory to promote the heterologous synthesis of PCPNs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!