Purpose: To investigate the effect of light stimulation on lipid droplets (LDs) and LD proteins in the retinal pigment epithelium (RPE).

Methods: Dark-adapted mouse eyes were exposed to intense flashes of light, and ARPE-19 cells were treated with all-trans-retinol. The two specimens were labeled with BODIPY493/503 for LDs and with antibodies for three LD proteins: adipocyte differentiation-related protein (ADRP), TIP47, and Rab18. The labeling intensity in fluorescence microscopy was quantified by image analysis. Localization of mutated TIP47 was also examined. Immunoelectron microscopy was performed for ADRP in mouse RPE. Expression of TIP47 in ARPE-19 cells was knocked down by RNA interference (RNAi), and its effect on retinyl ester storage was measured by HPLC.

Results: Both flashes of light on mouse eyes and all-trans-retinol on ARPE-19 cells caused rapid translocation of TIP47 from the cytosol to LDs, whereas ADRP distributed constitutively in LDs. The density of LDs did not show visible changes by any treatment. The localization of TIP47 to LDs was abolished when either the amino-terminal or the carboxyl-terminal half of the molecule was deleted, but was enhanced by a short deletion in the carboxyl terminus. Manipulation of TIP47 expression by RNAi or cDNA transfection did not affect the retinyl ester amounts in ARPE-19 cells significantly.

Conclusions: All-trans-retinol generated by photobleaching in the retina induces rapid translocation of TIP47 to LDs in the RPE.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.06-0768DOI Listing

Publication Analysis

Top Keywords

arpe-19 cells
16
all-trans-retinol generated
8
induces rapid
8
tip47
8
lipid droplets
8
retinal pigment
8
pigment epithelium
8
mouse eyes
8
flashes light
8
retinyl ester
8

Similar Publications

Diabetic retinopathy is characterized by hyperglycemic retinal pigment epithelial cells that secrete excessive pro-inflammatory cytokines and VEGF, leading to retinal damage and vision loss. Cobalt protoporphyrin (CoPP) is a compound that can reduce inflammatory responses by inducing high levels of HO-1. In the present study, the therapeutic effects of CoPP were examined in ARPE-19 cells under hyperglycemia.

View Article and Find Full Text PDF

Glucose-sensing ChREBP and MondoA are transcriptional factors involved in the lipogenic, inflammatory, and insulin signaling pathways implicated in metabolic disorders; however, limited ocular studies have been conducted on these proteins. We aimed to investigate the potential role of ChREBP in the pathogenesis of diabetic retinopathy (DR). We used diabetic human and mouse retinal cryosections analyzed by immunohistochemistry.

View Article and Find Full Text PDF

Astragaloside IV inhibits retinal pigment epithelial cell senescence and reduces IL-1β mRNA stability by targeting FTO-mediated mA methylation.

Phytomedicine

January 2025

School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China. Electronic address:

Background: Resistance to senescence in retinal pigment epithelial (RPE) cells can delay the progression of age-related macular degeneration (AMD). However, the mechanisms underlying RPE cell senescence remain inadequately understood, and effective therapeutic strategies are lacking. While astragaloside IV (Ast) has demonstrated anti-aging properties, its specific effects on RPE cell senescence and potential mechanisms are not yet fully clarified.

View Article and Find Full Text PDF

Aim: To test the effect of autophagy on inflammatory damage resulting from oxidative stress in adult retinal pigment epithelial cell line (ARPE-19).

Methods: ARPE-19 cells were pretreated with 200 and 600 µmol/L hydrogen peroxide (HO) at various time intervals. The changes of cell morphology, cell viability, reactive oxygen species (ROS) level, autophagic activity, and the inflammatory cytokines (TNFα, IL-6, and TGFβ) were measured at baseline and after treatment with autophagy inducer rapamycin (Rapa) and suppressor wortmannin (Wort) or shATG5.

View Article and Find Full Text PDF

The current research discusses polymer conjugation, formulation development, and evaluation of sorafenib-loaded polymeric nanomicelles of conjugated soluplus (solu-tin) and polymeric mixed nanomicelles of conjugated soluplus (solu-tin) with conjugated poloxamer 188 (polo-tin) for site-specific posterior segment delivery to the retina in managing retinoblastoma. Firstly, the soluplus and poloxamer 188 were conjugated with biotin by Fischer esterification reaction and evaluated by FTIR and H NMR for confirmation of covalent bond formation involving the carboxyl group of biotin and hydroxyl group of polymers. Secondly, the sorafenib-loaded solu-tin nanomicelles and mixed nanomicelles of solu-tin with polo-tin were formulated by the thin film hydration method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!