We have reported that posttranslational modification of systemic sclerosis patients' platelet phosphoinositide 1,3,4,5 kinase (PI 3-K) and protein kinase B (Akt) altered their enzymatic activities. In the present investigation, we have established a cell line model to study further the effects of posttranslational modification and modification by cytokines or growth factors of these two enzymes. Results from these studies suggest that posttranslational modification by phosphorylation of Akt and nitrotyrosylation of PI 3-K increases enzymatic activities, as was observed from SSc patients' platelets. These two signaling components are controlled by a different mechanism, which alters platelet reactivity towards the matrix components of vascular walls. We have used a megakaryotic cell line to study these two enzymes in the presence of cultured supernatants from peripheral blood mononuclear cells (PBMC), which were isolated from blood of SSc patients compared to controls including culture medium, rheumatoid arthritis, systemic lupus erythematosus, and osteoarthritis. The effect of the supernatants from SSc CI-stimulated PBMC cultures on both PI 3-K and Akt is specific.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2083118PMC
http://dx.doi.org/10.1016/j.bbagen.2007.04.003DOI Listing

Publication Analysis

Top Keywords

posttranslational modification
12
cell model
8
protein kinase
8
systemic sclerosis
8
enzymatic activities
8
model system
4
system study
4
study regulation
4
regulation phosphotidylinositol
4
phosphotidylinositol 3-kinase
4

Similar Publications

The abnormally viscous and thick mucus is a hallmark of cystic fibrosis (CF). How the mutated CF gene causes abnormal mucus remains an unanswered question of paramount interest. Mucus is produced by the hydration of gel-forming mucin macromolecules that are stored in intracellular granules prior to release.

View Article and Find Full Text PDF

Acetylation-enhanced Sp1 transcriptional activity suppresses Mlph expression.

Sci Rep

January 2025

Department of Genetics and Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Korea.

Melanosome transport is regulated by major proteins, including Rab27a, Melanophilin (Mlph), and Myosin Va (Myo-Va), that form a tripartite complex. Mutation of these proteins causes melanosome aggregation around the nucleus. Among these proteins, Mlph is a linker between Rab27a and Myo-Va.

View Article and Find Full Text PDF

Simplified acid extraction and quantification of histones in human tumor cells.

Methods Cell Biol

January 2025

Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School, Virgen Macarena University Hospital, University of Seville, Seville, Spain; Cancer Division, Faculty of medicine, Imperial college London, United Kingdom.

Histones are essential nuclear proteins that package eukaryotic DNA into chromosomes, play a vital role in gene regulation, DNA replication, DNA repair and chromosome condensation. Understanding histone modifications is crucial for grasping biological and disease-related processes. Specific alterations in histone modifications serve as sensitive and selective biomarkers for conditions like cancer, impacting both tumor and immune cells and affecting their interactions.

View Article and Find Full Text PDF

MnSOD non-acetylation mimic knock-in mice exhibit dilated cardiomyopathy.

Free Radic Biol Med

January 2025

Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA. Electronic address:

Manganese superoxide dismutase (MnSOD/SOD2) is an essential mitochondrial enzyme that detoxifies superoxide radicals generated during oxidative respiration. MnSOD/SOD2 lysine 68 acetylation (K68-Ac) is an important post-translational modification (PTM) that regulates enzymatic activity, responding to nutrient status or oxidative stress, and elevated levels have been associated with human illness. To determine the in vivo role of MnSOD-K68 in the heart, we used a whole-body non-acetylation mimic mutant (MnSOD) knock-in mouse.

View Article and Find Full Text PDF

Ubiquitin-A structural perspective.

Mol Cell

January 2025

Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia. Electronic address:

The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!