Genetic expression versus plasmidic overexpression of a functional recombinant fusion protein combining the yeast Saccharomyces cerevisiae mitochondrial ADP/ATP carrier (Anc2p) and the iso-1-cytochrome c (Cyc1p) has been investigated, with the main aim of increasing the polar surface of the carrier to improve its crystallization properties. The gene encoding the his6-tagged fusion protein was expressed in yeast under the control of the regulatory sequences of ScANC2 or under the control of the strong yeast PMA1 promoter. In both cases, the chimeric carrier, Anc2-Cyc1(His6)p, was able to restore growth on a non-fermentable carbon source of a yeast strain devoid of functional ADP/ATP carrier, demonstrating its transport activity. Nevertheless, when the expression vector was used, the level of expression of Anc2-Cyc1(His6)p was no greater than that of the chimeric carrier obtained in yeast mitochondria after homologous recombination. Optimal conditions to extract and to purify Anc2-Cyc1(His6)p were determined. A series of detergents was screened for their ability to extract and to preserve in vitro the chimeric carrier. A rapid, single step purification of Anc2-Cyc1(His6)p was developed, using n-dodecyl-beta-d-maltoside (DoDM) as the best detergent to solubilize the chimeric protein. Carboxyatractyloside- (CATR-) and nucleotide-binding sites were preserved in the purified protein. Moreover, the Cyc1p moiety of Anc2-Cyc1(His6)p-CATR complex solubilized in DoDM was still able to interact in vitro with the cytochrome c oxidase (COX), with the same affinity as yeast Cyc1p. Improved production and purification of Anc2-Cyc1(His6)p-CATR complex opens up new possibilities for the use of this protein in crystallographic approaches to the yeast ADP/ATP carrier. Furthermore, Anc2-Cyc1(His6)p may be an useful molecular tool to investigate in vivo interactions between components of the respiratory chain complexes such as COX and the proteins implicated in ATP biogenesis, such as the ATP/ADP carrier.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2007.03.019 | DOI Listing |
Cancers (Basel)
January 2025
Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00122 Rome, Italy.
Menin (MEN1) is a well-recognized powerful tumor promoter in acute leukemias (AL) with KMT2A rearrangements (KMT2Ar, also known as MLL) and mutant nucleophosmin 1 (NPM1m) acute myeloid leukemia (AML). MEN1 is essential for sustaining leukemic transformation due to its interaction with wild-type KMT2A and KMT2A fusion proteins, leading to the dysregulation of KMT2A target genes. MEN1 inhibitors (MIs), such as revumenib, ziftomenib, and other active small molecules, represent a promising new class of therapies currently under clinical development.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Centro de Investigación Biomédica en Red de Cáncer, CIBERONC CB16/12/00284, Instituto de Salud Carlos III, 28029 Madrid, Spain.
Recent studies have demonstrated the association between constitutional ring chromosome 21 (r(21)c) and the development of B-cell acute lymphoblastic leukemia (B-ALL) with intrachromosomal amplification of chromosome 21 (iAMP21). iAMP21 acts as a driver which is often accompanied by secondary alterations that influence disease progression. Here, we report an atypical case of iAMP21 B-ALL with a unique molecular profile in the context of r(21)c.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Centro di Riferimento Oncologico di Aviano (CRO), Department of Medical Oncology, IRCCS, 33081 Aviano, Italy.
Since the discovery of the first-generation ALK inhibitor, many other tyrosine kinase inhibitors have been demonstrated to be effective in the first line or further lines of treatment in patients with advanced non-small cell lung cancer with EMLA4-ALK translocation. This review traces the main milestones in the treatment of ALK-positive metastatic patients and the survival outcomes in the first-line and second-line settings with different ALK inhibitors. It presents the two options available for first-line treatment at the present time: sequencing different ALK inhibitors versus using the most potent inhibitor in front-line treatment.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an 716000, China.
As the antibiotic resistance of pathogens becomes increasingly severe, it is becoming more feasible to use methods that suppress the virulence of pathogens rather than exerting selective pressure on their growth. , a dangerous opportunistic pathogen, infects hosts by producing multiple virulence factors, which are regulated by quorum-sensing (QS) systems, including the systems, systems, and systems. This study used the chromosome transcription fusion reporter model to screen the traditional Chinese medicine monomer library and found that bakuchiol can effectively inhibit the system and related virulence phenotypes of , including the production of virulence factors (pyocyanin, hydrogen cyanide, elastase, and lectin) and motility (swarming, swimming, and twitching motility) without affecting its growth.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Food Technology, Department of Food Science and Technology, BOKU University, 1190 Vienna, Austria.
is a potential bacterial cell factory to develop delivery systems for vaccines and therapeutic proteins. Much progress has been made in applications using engineered against, e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!