Polyethylenimines (PEI) are often inefficient in gene knockdown experiments with small interfering RNA (siRNA), presumably due to the strong complexing properties. A more efficient and potentially degradable oligoethylenimine-based carrier was synthesized by the condensation of 800 molecular weight PEI oligomers with hexanedioldiacrylate. Reaction conditions were chosen such that Michael reaction occurs followed by complete N-acylation of all residual ester bonds resulting in beta-aminopropionamide linkage sites and an average molecular weight of 30,000. Based on NMR analysis, these conditions produced 38% tertiary amides and 62% secondary amides, with about 2% residual carboxylate, presumably from hydrolysis. The ionizable equivalent weight of the carrier increased to 51, compared to a value of 43 for standard PEI. Sensible in vitro knockdown of the luciferase gene in stably transfected HUH7 cells, up to 80% in comparison to non-specific siRNA, demonstrated its suitability for siRNA delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2007.04.037 | DOI Listing |
Comput Biol Med
January 2025
Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh.
The ERBB2 is one of the most studied genes in oncology for its significant role in human malignancies. The metastasis-associated properties that facilitate cancer metastasis can be enhanced by activating the ERBB2 receptor signaling pathways. Additionally, therapeutic resistance is conferred by ERBB2 overexpression via receptor-mediated antiapoptotic signals.
View Article and Find Full Text PDFCurr Pharm Biotechnol
January 2025
Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, AT & Po Piparia, Waghodia, Vadodara, Gujarat, India.
Alzheimer's disease (AD) remains a major challenge in developing effective treatments due to its complex pathophysiology, including the accumulation of amyloid-beta plaques and tau tangles. Small interfering RNA (siRNA) technology offers promise for targeted gene silencing, but effective delivery to the central nervous system remains a significant obstacle. Viral vectors have emerged as potent delivery vehicles for transporting siRNA to neural tissues.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P. R. China.
Nucleus pulposus cell (NPC) senescence contributes to intervertebral disc degeneration (IVDD). However, the underlying molecular mechanisms are not fully understood. In this study, it is demonstrated that angiotensin-converting enzyme 2 (ACE2) counteracted the aging of NPCs and IVDD at the cellular and physiological levels.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
January 2025
Faculty of Agriculture and Allied Sciences, C.V. Raman Global University, Bhubaneswar, India.
The field of biomedical science has witnessed another milestone with the advent of RNA-based therapeutics. This review explores three major RNA molecules, namely: messenger RNA (mRNA), RNA interference technology (RNAi), and Antisense Oligonucleotide (ASO), and analyses U.S.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
School of Medicine, Huaqiao University, Quanzhou, Fujian, People's Republic of China.
The effective clinical translation of messenger RNA (mRNA), small interfering RNA (siRNA), and microRNA (miRNA) for therapeutic purposes hinges on the development of efficient delivery systems. Key challenges include their susceptibility to degradation, limited cellular uptake, and inefficient intracellular release. Polymeric drug conjugates (PDCs) offer a promising solution, combining the benefits of polymeric carriers and therapeutic agents for targeted delivery and treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!