The present paper demonstrates the effect of salt fractionated turnip (Brassica rapa) proteins on the decolorization of direct dyes, used in textile industry, in the presence of various redox mediators. The rate and extent of decolorization of dyes was significantly enhanced by the presence of different types of redox mediators. Six out of 10 investigated compounds have shown their potential in enhancing the decolorization of direct dyes. The performance was evaluated at different concentrations of mediator and enzyme. The efficiency of each natural mediator depends on the type of dye treated. The decolorization of all tested direct dyes was maximum in the presence of 0.6mM redox mediator at pH 5.5 and 30 degrees C. Complex mixtures of dyes were also maximally decolorized in the presence of 0.6mM redox mediator (1-hydroxybenzotriazole/violuric acid). In order to examine the operational stability of the enzyme preparation, the enzyme was exploited for the decolorization of mixtures of dyes for different times in a stirred batch process. There was no further change in decolorization of an individual dye or their mixtures after 60 min; the enzyme caused more than 80% decolorization of all dyes in the presence of 1-hydroxybenzotriazole/violuric acid. However, there was no desirable increase in dye decolorization of the mixtures on overnight stay. Total organic carbon analysis of treated dyes or their mixtures showed that these results were quite comparable to the loss of color from solutions. However, the treatment of such polluted water in the presence of redox mediators caused the formation of insoluble precipitate, which could be removed by the process of centrifugation. The results suggested that catalyzed oxidative coupling reactions might be important for natural transformation pathways for dyes and indicate their potential use as an efficient means for removal of dyes color from waters and wastewaters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2007.03.069 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!