Background: Membrane-associated carbohydrate changes act as signals for removal of senescent and damaged red blood cells (RBCs) from the circulation and could play a role in the RBC storage lesion and RBC survival after transfusion. In this study, a panel of lectins was used to investigate the expression of carbohydrates on RBCs that had been separated before storage into young and old RBCs.
Study Design And Methods: Leukodepleted RBCs were separated before storage into young and old RBCs (n = 9 paired units) by centrifugation and sampled at nominated time points during 42 days of storage. Changes to carbohydrate expression at the RBC membrane during storage were determined by flow cytometry with a panel of fluorescein-labeled lectins.
Results: Old RBCs showed lower fluorescence intensity throughout storage, suggesting reduced binding of lectins compared to young RBCs. Progressively increased binding of lectins specific for galactose and N-acetylglucosamine residues was observed during storage of young and old RBCs.
Conclusion: Changes to lectin binding during storage of RBCs suggest that significant changes occur to the carbohydrate structures at the RBC membrane. These findings provide further insight into the mechanisms of the RBC storage lesion and potential influence on RBC survival after transfusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1537-2995.2007.01230.x | DOI Listing |
BMC Infect Dis
December 2024
KEMRI-Wellcome Trust Research Programme, P.O. Box 230, Kilifi, Kenya.
Increased immune evasion by emerging and highly mutated SARS-CoV-2 variants is a key challenge to the control of COVID-19. The majority of these mutations mainly target the spike protein, allowing the new variants to escape the immunity previously raised by vaccination and/or infection by earlier variants of SARS-CoV-2. In this study, we investigated the neutralizing capacity of antibodies against emerging variants of interest circulating between May 2023 and October 2024 using sera from representative samples of the Kenyan population.
View Article and Find Full Text PDFBMC Musculoskelet Disord
December 2024
Physical medicine & rehabilitation research center, School of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: Pompe disease is a glycogen storage disease primarily affecting striated muscles. Despite its main manifestation in muscles, patients with Pompe disease may exhibit non-muscle symptoms, such as hearing loss, suggesting potential involvement of sensory organs or the nervous system due to glycogen accumulation.
Aims: This study aimed to evaluate the presence of concomitant small and large fiber neuropathy in patients with Pompe disease.
Geroscience
December 2024
Laboratory of Neurodegenerative Diseases, Center for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki (CIRI-AUTh), 54124, Thessaloniki, Greece.
The accurate diagnosis of aging-related neurocognitive disorders as early as possible, even in a phase that is characterized by the absence of clinical symptoms, is nowadays the holy grail of the neurosciences. R4Alz-R is a novel cognitive tool designed to objectively detect the subtle cognitive changes that emerge as the very first result of the aging processes and could be developed and broadened in a continuum from healthy aging to subjective cognitive impairment (SCI) and mild cognitive impairment (MCI), before reaching some type of dementia. The goal of the present study was to examine whether the R4Alz-R battery has the potential to detect these subtle changes.
View Article and Find Full Text PDFToxins (Basel)
November 2024
Department of Nutrition, Dietetics & Food Science, Brigham Young University, Provo, UT 84602, USA.
Mycotoxins are toxins produced by fungi that contaminate many key food crops as they grow in the field and during storage. Specific mycotoxins are produced by different fungi. Each type of fungus and mycotoxin have their own optimal temperatures and water activities for growth and production.
View Article and Find Full Text PDFAdv Mater
December 2024
College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China.
Achieving efficient and sustainable hydrogen production through photocatalysis is highly promising yet remains a significant challenge, especially when replacing costly noble metals with more abundant alternatives. Conversion efficiency with noble-metal-free alternatives is frequently limited by high charge recombination rates, mainly due to the sluggish transfer and inefficient consumption of photo-generated holes. To address these challenges, a rational design of noble-metal-free cocatalysts as oxidative sites is reported to facilitate hole consumption, leading to markedly increased H yield rates without relying on expensive noble metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!