In trying to assess the structural integrity of electrospun type II collagen scaffolds, a modified but new technique for cross-linking collagen has been developed. Carbodiimides have been previously used to cross-link collagen in gels and in lyophilized native tissue specimens but had not been used for electrospun mats until recently. This cross-linking agent, and in particular 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC), is of extreme interest, especially for tissue-engineered scaffolds composed specifically of native polymers (e.g., collagen), because it is a zero-length cross-linking agent that has not been shown to cause any cytotoxic reactions. The unique aspect of the cross-linking protocol in this study involves the use of ethanol as the solvent for the cross-linking agent, because the pure collagen electrospun mats immediately disintegrate when placed in an aqueous solution. This study examines 2 concentrations of EDC with and without the addition of N-hydroxysuccinimide to the reaction (which has been shown to result in higher cross-linking yields in aqueous solutions) to test the hypothesis that the use of EDC in a nonaqueous solution will cross-link electrospun type II collagen fibrous matrices in a comparable manner to typical glutaraldehyde fixation protocols. The use of EDC is compared with the cross-linking effects of glutaraldehyde via mechanical testing (uniaxial tensile testing) and biochemical testing (analysis of the percentage of free amino groups). The stress-strain curves of the cross-linked samples demonstrated uniaxial tensile behavior more characteristic of native tissue than do the dry, untreated samples. The heated, 50% glutaraldehyde cross-linking protocol resulted in a mean peak stress of 0.76 MPa, a mean strain at break of 127.30%, and a mean tangential modulus of 0.89 MPa; mean values for the samples treated with the EDC protocols ranged from 0.35 to 0.60 MPa for peak stress, from 111.83 to 159.23% for strain at break, and from 0.57 to 0.92 MPa for tangential modulus. Low and high concentrations (20 mM and 200 mM, respectively) of EDC alone were comparable in extent of cross-linking (29% and 29%, respectively) to the heated 50% glutaraldehyde cross-linking protocol (30% cross-linked).

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.2006.0292DOI Listing

Publication Analysis

Top Keywords

electrospun type
12
type collagen
12
cross-linking agent
12
cross-linking protocol
12
cross-linking
11
native tissue
8
electrospun mats
8
uniaxial tensile
8
heated 50%
8
50% glutaraldehyde
8

Similar Publications

Electrospun 11β-HSD1 Inhibitor-Loaded Scaffolds for Accelerating Diabetic Ulcer Healing.

ACS Appl Bio Mater

December 2024

Jiangsu Provincial Engineering Research Centre of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China.

Diabetic ulcers (DUs) are a common and severe complication of diabetes, characterized by impaired wound healing due to a complex pathophysiological mechanism. Elevated levels of 11β-hydroxysteroid dehydrogenase type I (11β-HSD1) in wounds have been demonstrated to modulate glucocorticoid activity, leading to delayed skin cell proliferation and restricted angiogenesis, ultimately hindering wound healing. In this study, we propose an electrospun poly(ε-caprolactone) (PCL) nanofiber scaffold doped with the 11β-HSD1 inhibitor BVT2733 (BPs) to prevent 11β-HSD1 activity during the diabetic wound healing process.

View Article and Find Full Text PDF

The first set of data refers to Insulin-like Growth Factor-1 (IGF-1) protein incorporation via emulsion electrospinning into a DegraPol random fiber mesh and its characterization. Specifically, the fiber thickness was assessed and compared to pure DegraPol fibers without IGF-1 (control). Furthermore, the mechanical properties of these meshes were assessed and data on ultimate tensile stress, Young's modulus and ultimate fracture strain are presented for ring specimen and rectangular pieces taken from electrospun tubes in the transverse direction as well as rectangular pieces taken in the axial direction of the electrospun tube.

View Article and Find Full Text PDF

Properties of Electrospun Fibers That Influence Foreign Body Response Modulation.

ACS Biomater Sci Eng

December 2024

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.

Improving the utility of biomedical devices implanted in subcutaneous tissue by modulating the innate immune response common to these implants is of great interest to improve their utility. Uncontrolled, most biomedical devices produce an immune reaction known broadly as the foreign body response (FBR), which ultimately isolates the device from the native tissue. The use of electrospun fibers to create a porous surface that promotes tissue in-growth and regeneration represents a new paradigm in FBR modulation.

View Article and Find Full Text PDF

Peripheral nerve injuries (PNI) represent the most common type of nervous system injuries, resulting in 5 million injuries per year. Current gold standard, autografts, still carry several limitations, including the inappropriate type, size, and function matches in grafted nerves, lack of autologous donor sites, neuroma formation, and secondary surgery incisions. Polymeric nerve conduits, also known as nerve guides, can help overcome the aforementioned issues that limit nerve recovery and regeneration by reducing tissue fibrosis, misdirection of regenerating axons, and the inability to maintain long- distance axonal growth.

View Article and Find Full Text PDF

Electrospun nanofibrous membranes made of chiral selectors (CSs) have shown their potential for efficient chiral resolutions via filtrations. It is thus of great importance to expand the number of electrospun membranes made of various CSs for the resolution of a wide range of chiral compounds. Here, the electrospinning of two benzyl carbamate derivatives of cellulose, namely cellulose benzyl carbamate (CBzC) and cellulose 4-chlorobenzyl carbamate (CCBzC), to form a new type of enantioselective membranes for chiral resolutions of racemic compounds, is reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!