Childhood acute lymphoblastic leukemia (ALL) is a heterogeneous disease. Current treatment approaches are tailored according to the clinical features of the host, genotypic features of the leukemic blast, and early response to therapy. Although these approaches have been successful in dramatically improving outcomes, approximately 20% of children with ALL still relapse and many of these children do not have an identifiable adverse risk factor at presentation. Further insights into the biologic basis of the disease may contribute to novel, rational treatment strategies. Childhood ALL has served as an example for demonstrating the feasibility and potential of high-throughput technologies such as global gene expression or transcript profiling. In the last decade or so, utilization of these techniques has grown exponentially. As the methodology undergoes refinement and validation, it is plausible that microarrays may be used in the routine management of childhood ALL in the next few years. This article discusses the numerous applications to date of gene expression profiling in childhood ALL. Multiple investigators have made it evident that microarrays can be used as a single platform for the accurate classification of ALL into the various cytogenetic subtypes. Additional promising utilities include prediction of early response to therapy, overall outcome, and adverse effects. Identification of patients who are predicted to have an unfavorable outcome may allow for early intervention such as intensification of therapy or avoidance of drugs that are associated with specific secondary effects such as therapy-related acute myelogenous leukemia. Knowledge has been gained into pathways contributing to leukemogenesis and chemoresistance. Therapeutic targets have been identified, some of which are entering clinical trials following validation in additional preclinical models. These newer methods of genome analyses complemented by studies involving the proteome as well as host polymorphisms will have a profound impact on the diagnosis and management of childhood ALL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2165/00148581-200709030-00003 | DOI Listing |
Dig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.
View Article and Find Full Text PDFBiochem Genet
January 2025
Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.
View Article and Find Full Text PDFClin Exp Med
January 2025
Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!