Biochemical studies in solution and with myosin motor fragments adsorbed to surfaces (in vitro motility assays) are invaluable for elucidation of actomyosin function. However, there is limited understanding of how surface adsorption affects motor properties, e.g., catalytic activity. Here we address this issue by comparing the catalytic activity of heavy meromyosin (HMM) in solution and adsorbed to standard motility assay surfaces [derivatized with trimethylchlorosilane (TMCS)]. For these studies we first characterized the interaction of HMM and actomyosin with the fluorescent ATP analogue adenosine 5'-triphosphate Alexa Fluor 647 2'- (or 3'-) O-(N-(2-aminoethyl)urethane) hexa(triethylammonium) salt (Alexa-ATP). The data suggest that Alexa-ATP is hydrolyzed by HMM in solution at a slightly higher rate than ATP but with a generally similar mechanism. Furthermore, Alexa-ATP is effective as a fuel for HMM-propelled actin filament sliding. The catalytic activity of HMM on TMCS surfaces was studied using (1) Alexa-ATP in total internal reflection fluorescence (TIRF) spectroscopy experiments and (2) Alexa-ATP and ATP in HPLC-aided ATPase measurements. The results support the hypothesis of different HMM configurations on the surface. However, a dominant proportion of the myosin heads were catalytically active, and their average steady-state hydrolysis rate was slightly higher (with Alexa-ATP) or markedly higher (with ATP) on the surface than in solution. The results are discussed in relation to the use of TMCS surfaces and Alexa-ATP for in vitro motility assays and single molecule studies. Furthermore, we propose a novel TIRF microscopy method to accurately determine the surface density of catalytically active myosin motors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi700211uDOI Listing

Publication Analysis

Top Keywords

catalytic activity
16
surface adsorption
8
activity heavy
8
heavy meromyosin
8
fluorescent atp
8
atp analogue
8
vitro motility
8
motility assays
8
hmm solution
8
tmcs surfaces
8

Similar Publications

CO in coal mine underground spaces can easily cause casualties among miners. The humidity in coal mines is relatively high, and traditional Cu-Mn catalysts are prone to deactivation. Compared to traditional Cu-Mn catalysts, doping with Sn enhances the activity and water resistance of Cu-Mn catalysts.

View Article and Find Full Text PDF

TOP2A inhibition and its cellular effects related to cell cycle checkpoint adaptation pathway.

Sci Rep

January 2025

Departamento Biología Experimental, Universidad de Jaén, Paraje Las Lagunillas S/N E23071, Jaén, Spain.

In this study, we investigate the G2 checkpoint activated by chromosome entanglements, the so-called Decatenation Checkpoint (DC), which can be activated by TOP2A catalytic inhibition. Specifically, we focus on the spontaneous ability of cells to bypass or override this checkpoint, referred to as checkpoint adaptation. Some factors involved in adapting to this checkpoint are p53 and MCPH1.

View Article and Find Full Text PDF

Designing asymmetrical structures is an effective strategy to optimize metallic catalysts for electrochemical carbon dioxide reduction reactions. Herein, we demonstrate a transient pulsed discharge method for instantaneously constructing graphene-aerogel supports asymmetric copper nanocluster catalysts. This process induces the convergence of copper atoms decomposed by copper chloride onto graphene originating from the intense current pulse and high temperature.

View Article and Find Full Text PDF

Asymmetric synthesis of stereogenic-at-iridium(III) complexes through Pd-catalyzed kinetic resolution.

Nat Commun

January 2025

Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, P. R. China.

Metal-centered chirality has been recognized for over one century, and stereogenic-at-metal complexes where chirality is exclusively attributed to the metal center due to the specific coordination pattern of achiral ligands around the metal ion, has been broadly utilized in diverse areas of natural science. However, synthesis of these molecules remains constrained. Notably, while asymmetric catalysis has played a crucial role in the production of optically active organic molecules, its application to stereogenic-at-metal complexes is less straightforward.

View Article and Find Full Text PDF

Genome-wide identification of carboxyesterase family members reveals the function of GeCXE9 in the catabolism of parishin A in Gastrodia elata.

Plant Cell Rep

January 2025

Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.

GeCXE9 can catalyze the hydrolysis of parishin A via two pathways during the medicinal processing of Gastrodia elata. Gastrodia elata Bl. is used in traditional Chinese medicine for its bioactive compounds, particularly phenols.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!