Excited-state intramolecular proton transfer in 2-(2'-arylsulfonamidophenyl)benzimidazole derivatives: the effect of donor and acceptor substituents.

J Org Chem

School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, USA.

Published: June 2007

A series of water-soluble 2-(2'-arylsulfonamidophenyl)benzimidazole derivatives containing electron-donating and accepting groups attached to various positions of the fluorophore pi-system has been synthesized and characterized in aqueous solution at 0.1 M ionic strength. The measured pK(a)'s for deprotonation of the sulfonamide group of monosubstituted derivatives range between 6.75 and 9.33 and follow closely Hammett's free energy relationship. In neutral aqueous buffer, all compounds undergo efficient excited-state intramolecular proton transfer (ESIPT) to yield a strongly Stokes-shifted fluorescence emission from the phototautomer. Upon deprotonation of the sulfonamide nitrogen at high pH, ESIPT is interrupted to yield a new, blue-shifted emission band. The peak absorption and emission energies were strongly influenced by the nature of the substituents and their attachment positions on the fluorophore pi-system. The fluorescence quantum yield of the ESIPT tautomers revealed a significant correlation with the observed Stokes shifts. The study provides valuable information regarding substituent effects on the photophysical properties of this class of ESIPT fluorophores in an aqueous environment and may offer guidelines for designing emission ratiometric pH or metal-cation sensors for biological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo070433lDOI Listing

Publication Analysis

Top Keywords

excited-state intramolecular
8
intramolecular proton
8
proton transfer
8
2-2'-arylsulfonamidophenylbenzimidazole derivatives
8
positions fluorophore
8
fluorophore pi-system
8
deprotonation sulfonamide
8
transfer 2-2'-arylsulfonamidophenylbenzimidazole
4
derivatives donor
4
donor acceptor
4

Similar Publications

A novel fluorescent probe, Bibc-DNBS, based on the combination of the PET (photoinduced electron transfer) and ESIPT (excited-state intramolecular proton transfer) mechanisms, was designed and synthesized. Bibc-DNBS exhibited a Stokes shift of 172 nm in the fluorescence detection field. In addition, the probe exhibited good performance in key parameters in bioassays such as sensitivity, specificity, and response time.

View Article and Find Full Text PDF

A series of 2-pyridone[α]-fused BOPHYs - were prepared via a two-step procedure involving the preparation of enamine, followed by an intramolecular heterocyclization reaction. In addition to being fully conjugated with the BOPHY core pyridone fragment, BOPHYs and have a pyridine group connected to the BOPHY core via one- or two -CH- groups. New BOPHYs were characterized by spectroscopy as well as X-ray diffraction.

View Article and Find Full Text PDF

Despite significant advancements in the structural flexibility and functional diversity of fluorescent molecular sensors, the chromophores often require complex synthetic processes and are typically designed to perform only a specific function. Herein, we have demonstrated the unique features of fluorophores based on a fused coumarin-indole scaffold, which are synthetically available via a one-step reaction. Four fluorophores (ICH, ICEst, ICOMe, and ICNMe2) with varying substituents were synthesized and characterized.

View Article and Find Full Text PDF

What Two-Dimensional Electronic Spectroscopy Can Tell Us about Energy Transfer in Dendrimers: Ab Initio Simulations.

J Phys Chem Lett

January 2025

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China.

Two-dimensional (2D) electronic spectra of the phenylene ethynylene dendrimer with 2-ring and 3-ring branches were evaluated by combining the on-the-fly trajectory surface hopping nonadiabatic dynamics and the doorway-window simulation protocol. The ground state bleach (GSB), stimulated emission (SE), and excited-state absorption (ESA) contributions to the 2D signal were obtained and carefully analyzed. The results demonstrate that the ultrafast intramolecular nonadiabatic excited-state energy transfer (EET) from the 2-ring to the 3-ring units is comprehensively characterized by the SE and ESA signals.

View Article and Find Full Text PDF

N-heterocyclic carbene (NHC)-based phosphorescent iridium complexes have attracted extensive attention due to their good optical properties and high stability in recent years. However, currently reported NHC-based iridium complexes can easily achieve emission of blue, green, or even ultraviolet light, while emission of red or deep-red light is relatively rare. Here, we report a new family of NHC-based deep-red iridium complexes (Ir1, Ir2, Ir3, and Ir4) featuring three-charge (0, -1, -2) ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!