This work demonstrates that histological grading of brain tumors and astrocytomas can be accurately predicted and causally explained with the help of causal probabilistic models, also known as Bayesian networks (BN). Although created statistically, this allows individual identification of the grade of malignancy as an internal cause that has enabled the development of the histological features to their observed state. The BN models are built from data representing 794 cases of astrocytomas with their malignant grading and corresponding histological features. The computerized learning process is improved when pre-specified knowledge (from the pathologist) about simple dependency relations to the histological features is taken into account. We use the BN models for both grading and causal analysis. In addition, the BN models provide a causal explanation of dependency between the histological features and the grading. This can offer the biggest potential for choice of an efficient treatment, since it concentrates on the malignancy grade as the cause of pathological observations. The causal analysis shows that all ten histological features are important for the grading. The histological features are causally ordered, implying that features of first order are of higher priority, e.g. for the choice of treatment in order not to allow the malignancy to progress to a higher degree. Due to the explanations of feature relations, the causal analysis can be considered as a powerful complement to any malignancy classification tool and allows reproducible comparison of malignancy grading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.14670/HH-22.947 | DOI Listing |
Neuro Oncol
January 2025
Childhood Cancer & Cell Death team (C3 team), Consortium South-ROCK, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France.
Background: Brain tumors are the deadliest solid tumors in children and adolescents. Most of these tumors are glial in origin and exhibit strong heterogeneity, hampering the development of effective therapeutic strategies. In the past decades, patient-derived tumor organoids (PDT-O) have emerged as powerful tools for modeling tumoral cell diversity and dynamics, and they could then help defining new therapeutic options for pediatric brain tumors.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
Purpose: Geographic atrophy (GA), an advanced form of dry age-related macular degeneration (AMD), has limited treatment options. This study introduces a novel mouse model featuring an expanding GA patch that can be used to test mechanisms and therapeutics.
Methods: C57Bl/6J male mice (n = 96) aged 9-10 weeks received an intraperitoneal (IP) injection of 20 mg/kg sodium iodate (NaIO3).
Microbiol Spectr
January 2025
Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA.
Unlabelled: is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models of infection. Despite the importance of as a cause of cardiac dysfunction and the dramatic socioeconomic impact of African trypanosomiases in sub-Saharan Africa, there are currently no reproducible murine models of associated cardiomyopathy.
View Article and Find Full Text PDFInvestig Clin Urol
January 2025
Department of Urology, Mansoura Urology and Nephrology Center, Mansoura University, Mansoura, Egypt.
Purpose: To create a computer-aided prediction (CAP) system to predict Wilms tumor (WT) responsiveness to preoperative chemotherapy (PC) using pre-therapy contrast-enhanced computed tomography (CECT).
Materials And Methods: A single-center database was reviewed for children <18 years diagnosed with WT and received PC between 2001 and 2021. Patients were excluded if pre- and post-PC CECT were not retrievable.
Anat Histol Embryol
January 2025
Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
This study investigates the gross morphological and morphometric characteristics of thoracic and lumbar intervertebral discs (IVDs) in guinea pigs, utilising micro-CT imaging and anatomical dissection. The findings reveal 13 thoracic and six lumbar IVDs were identified, with thoracic discs transitioning from rounded forms at T1-T3 to triangular and heart-shaped structures at T4-T13, while lumbar IVDs exhibited a consistently flattened heart shape. Morphometric analysis revealed statistically significant differences, with lumbar IVDs being larger in lateral and dorsoventral width, disc area, annulus fibrosus (AF) area and nucleus pulposus (NP) area, and ventral height compared to thoracic discs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!