AI Article Synopsis

  • Growth factors, like IGF-1, FGF, and TGF-beta 1, play key roles in cartilage development and repair, but they have different effects on reactive oxygen species (ROS) levels in cartilage.
  • In experiments with rat cartilage, IGF-1 significantly reduced ROS and enhanced antioxidant enzyme activity, while TGF-beta 1 increased ROS levels in mature and aged cartilage without causing cell death.
  • The study highlights IGF-1's potential antioxidant properties and suggests that TGF-beta 1 may have a non-toxic, signaling role in cartilage physiology despite its pro-oxidant effects.

Article Abstract

Growth factors are important in the development, maintenance and repair of cartilage. The principal aim of this study was to test the capacity of three growth factors with established roles in cartilage, namely insulin-like growth factor (IGF)-1, fibroblast growth factor (FGF) and transforming growth factor (TGF)-beta 1, to alter intracellular reactive oxygen species (ROS) levels. Explants of articular cartilage from young, mature, and aged rats were pretreated with IGF-1, FGF, or TGF-beta 1 and intracellular ROS levels were quantified using the free radical sensing probe dihydrorhodamine 123 (DHR 123), confocal microscopy, and densitometric image analysis. Viability of chondrocytes following ROS stress and growth factor treatment was assessed using the live/dead cytotoxicity assay, and the activities of the antioxidant enzymes--catalase (CAT), total superoxide dismutase (SOD), and glutathione peroxidase (GPX)--were measured spectrophotometrically by decay of the substrate from the reaction mixture. The effect of IGF-1 on ROS levels in cultured human chondrocytes also was examined. In rat cartilage, FGF did not significantly affect ROS levels or antioxidant enzyme activity in any age group. TGF-beta1 significantly increased cellular ROS levels in mature and old cartilage whereas in marked contrast, IGF-1 significantly and age-dependently reduced ROS levels. IGF-1 also had a potent antioxidant effect on cultured human chondrocytes. Pretreatment of rat cartilage with IGF-1 significantly enhanced the activity of GPX, without altering the activity of SOD or CAT, and protected chondrocytes against ROS-induced cell death. TGF-beta 1 had no significant effect on the activity of the antioxidant enzymes. Despite promoting ROS production, TGF-beta 1 was not cytotoxic. We concluded that TGF-beta 1 exhibits an acute pro-oxidant effect in cartilage that is not cytotoxic, suggesting a role in physiological cell signalling. In marked contrast, IGF-1 is a potent antioxidant in mature and aged rat and human chondrocytes, protecting cells against ROS-induced cell death probably through the enhancement of the activity of the antioxidant enzyme GPX.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03008200701331516DOI Listing

Publication Analysis

Top Keywords

ros levels
24
growth factor
16
human chondrocytes
12
intracellular reactive
8
reactive oxygen
8
oxygen species
8
igf-1
8
igf-1 fgf
8
growth factors
8
ros
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!