12-Lipoxygenase (12-LOX) is over-expressed in a variety of human tumors, but its exact effect on the tumorogenesis of gastric cancer remains largely obscure. To investigate the effect of 12-LOX and its inhibitor baicalein on proliferation and apoptosis of human gastric cancer, AGS cells were separately treated with 12-hydroxyeicosatetraenoic acid (12-HETE, a metabolite of 12-LOX) and baicalein. MTT assay revealed that the absorbance of the 12-HETE-treated group was significantly (P < 0.01) higher than that of control group and that the absorbance of baicalein-treated group was significantly (P < 0.01) less than that of the control group, and that 48 h after treatment the apoptosis index of the baicalein-treated group was significantly (P < 0.01) higher than that of the untreated group and was significantly (P < 0.01) lower in the 12-HETE-treated group. Western blotting analysis was used to investigate the mechanism of these effects. The results revealed that the concentration of phosphorylated ERK in cells treated with 100 nmol L(-1) 12-HETE was significantly (P < 0.05) higher than in the untreated group and that the concentration of phosphorylated ERK1/2 in cells treated with 40 micromol L(-1) baicalein was significantly (P < 0.05) lower than in the untreated group. The expression level of bcl-2 was up-regulated and down-regulated after separate treatment with 12-HETE and baicalein, respectively, and both of these effects could be blocked by PD98059. Protein kinase C (PKC) activity was increased by treatment with 12-HETE and reduced by treatment with baicalein (P < 0.05). The PKC inhibitor BIM (bisindolymaleimide-I) blocked the phosphorylation of ERK1/2 and activation of PKC induced by 12-LOX. When pretreated with BIM, the concentration of phospho-ERK1/2 or bcl-2 in the BIM + 12-HETE-treated group was significantly (P < 0.05) lower than in that treated with 12-HETE only, and the concentration in the BIM + baicalein-treated group was significantly (P < 0.05) higher than in that treated with baicalein only. On the basis of these data we conclude that, via its metabolite 12-HETE, 12-LOX abolishes proliferation of AGS cells and protect cells from apoptosis by activating the ERK1/2 pathway and, eventually, enhances expression of bcl-2. Because PKC is also involved in the activation of ERK1/2 induced by 12-LOX, 12-LOX inhibitors would be potentially powerful anticancer agents for prevention and cure of human gastric cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10620-007-9841-1DOI Listing

Publication Analysis

Top Keywords

gastric cancer
16
group 001
16
human gastric
12
ags cells
12
12-hete-treated group
12
baicalein-treated group
12
untreated group
12
group
11
apoptosis human
8
cancer ags
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!