Laying solid foundations for Europe.

Nature

EMBL, Meyerhofstr. 1, 69117 Heidelberg, Germany.

Published: May 2007

Download full-text PDF

Source
http://dx.doi.org/10.1038/447377aDOI Listing

Publication Analysis

Top Keywords

laying solid
4
solid foundations
4
foundations europe
4
laying
1
foundations
1
europe
1

Similar Publications

Photovoltaic-Driven Battery Deionization System for Efficient and Sustainable Seawater Desalination.

Environ Sci Technol

December 2024

Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, SUSTech Energy Institute for Carbon Neutrality, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

Seawater desalination via electrochemical battery deionization (BDI) has shown significant potential for freshwater production. However, its widespread application has been limited by the high energy costs involved. To facilitate the commercialization of BDI technology, it is crucial to develop innovative integrated BDI systems that utilize sustainable energy sources and assess their practical performance for desalination of natural seawater.

View Article and Find Full Text PDF

Although multicolor luminescent materials are widely used in information encryption and decryption based on the excited-state intramolecular proton transfer (ESIPT) reaction, there remains a significant gap in the mechanistic understanding of how solvent and pH conditions influence the ESIPT process. Owing to their ability to avoid self-absorption as well as provide large Stokes' shift and strong emission properties, ESIPT-generated molecules (ESIPT gens) have recently emerged as highly potential fluorophores. Herein, the ESIPT mechanism of bromine-based (2'-hydroxy-5'-bromo)phenylbenzimidazole (HBI-pBr) was investigated in solvents using spectroscopic measurements and time-dependent density functional theory (TD-DFT) calculations.

View Article and Find Full Text PDF

Achieving Robust α-Alumina Nanofibers by Ligand Confinement Coupled with Local Disorder Tuning.

ACS Nano

December 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China.

As high-performance thermal protection and structure enhancement materials, oxide ceramic fibers have become indispensable in numerous areas, ranging from deep-sea exploration to supersonic aircraft. However, under extreme energy input, abnormal grain growth and inevitable vermiculate structure would break the fiber integrity, causing catastrophic structure failure. Nowadays, the design of nanoceramics brings potential answers for strengthening of mechanical properties, but with the diameter downsized to the nanoscale, the increasing structural susceptibility of ceramic fiber to phase transformation and grain growth becomes a huge barrier.

View Article and Find Full Text PDF

Multi-Pilot Channel Estimation for Orthogonal Time-Frequency Space Systems Based on Constant-Amplitude Zero-Autocorrelation Sequences.

Sensors (Basel)

November 2024

Science and Technology on Electronic Test and Measurement Laboratory, School of Instrument and Electronics, North University of China, Taiyuan 030051, China.

Future communication systems must support high-speed mobile scenarios, while the mainstream Orthogonal Frequency Division Multiplexing (OFDM) technology faces severe inter-carrier interference in such environments. Therefore, the adoption of Orthogonal Time-Frequency Space (OTFS) modulation in 6G systems is an effective solution. The widely used single-pilot channel estimation in OTFS systems is susceptible to path loss and inaccurate fading coefficient estimation, leading to reduced estimation accuracy, signal distortion, and degraded overall system communication quality.

View Article and Find Full Text PDF

Previous studies have shown that EPHB4 is also involved in regulating the proliferation, migration, and apoptosis of endothelial cells. In this study, we found a close relationship between EPHB4 and aging. Therefore, in-depth research on the relationship between EPHB4 and aging can help reveal the molecular mechanisms of aging and provide new ideas and methods for developing anti-aging drugs and treating vascular aging-related diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!