Objectives: Increasing pulmonary blood flow aggravated ventilation-associated lung injury in ex vivo animal experiments, but data were less consistent in an in vivo animal model and do not reflect redistributed lung perfusion seen in clinical acute lung injury. We sought to determine the effects of increased cardiac output on markers of lung injury in an in vivo model of inhomogeneous lung perfusion and injury.
Design: Prospective, controlled animal study.
Setting: Experimental research laboratory of a university hospital.
Subjects: A total of 50 anesthetized, mechanically ventilated, male Wistar rats.
Interventions: Unilateral lung injury was induced in rats by left lung acid instillation. After 24 hrs, animals were anesthetized and subjected to mechanical ventilation (tidal volume, 8 mL/kg; positive end-expiratory pressure, 7 cm H2O; FIO2, 0.4) and continuous infusion of either 10 microg x kg x min dobutamine or isotonic saline (control) for 4 hrs.
Measurements And Main Results: Cardiac output and differential lung perfusion were recorded throughout the ventilation period. Right and left lung wet-to-dry weight ratio, cytokines and inflammatory cells in lung lavage, and histologic lung injury were measured postmortem. After acid injury, lung perfusion was preferentially distributed to the noninjured lung. Dobutamine increased baseline cardiac output (>70%) and perfusion of both lungs (left, acid-instilled lung: from 16 +/- 2 to 29 +/- 6 mL/min; right, non-acid-instilled lung: from 54 +/- 3 to 98 +/- 7 mL/min). There was no difference in left lung injury between dobutamine- and saline-infused animals, but right lung injury was aggravated in dobutamine-infused animals, as indicated by increased lung edema, histologic lung injury, and cell counts in lavage.
Conclusions: In the setting of unilateral lung injury and uneven lung perfusion, a dobutamine-induced increase in cardiac output has potentially detrimental effects on the opposite lung.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.CCM.0000269374.85160.BF | DOI Listing |
FEBS J
January 2025
INSERM UMR-1100, "Research Center for Respiratory Diseases (CEPR)", Tours, France.
Transplanted organs are inevitably exposed to ischemia-reperfusion (IR) injury, which is known to cause graft dysfunction. Functional and structural changes that follow IR tissue injury are mediated by neutrophils through the production of oxygen-derived free radicals, as well as from degranulation which entails the release of proteases and other pro-inflammatory mediators. Neutrophil serine proteases (NSPs) are believed to be the principal triggers of post-ischemic reperfusion damage.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
The First Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
Background: Sepsis and acute respiratory distress syndrome (ARDS) are common inflammatory conditions in intensive care, with ARDS significantly increasing mortality in septic patients. PANoptosis, a newly discovered form of programmed cell death involving multiple cell death pathways, plays a critical role in inflammatory diseases. This study aims to elucidate the PANoptosis-related genes (PRGs) and their involvement in the progression of sepsis to ARDS.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Pain, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
This study aimed to observe the mechanism of hydrogen (H) in a lung transplantation model simulated by pulmonary microvascular endothelial cells (PMVECs), which were divided into 5 groups. The blank group was the normal PMVECs. During cold ischemia period, PMVECs in the control, O, or H groups were aerated with no gas, O, or 3% H, and 3% H after transfected with a small interfering RNA targeting Nrf2 in the H+si-Nrf2 group.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Institute of Physics, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil.
Iron oxide-based nanoparticles are promising materials for cancer thermal therapy and immunotherapy. However, several proofs of concept reported data with murine tumor models that might have limitations for clinical translation. Magnetite is nowadays the most popular nanomaterial, but doping with distinct ions can enhance thermal therapy, namely, magnetic nanoparticle hyperthermia (MNH) and photothermal therapy (PTT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!