Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia, affecting millions of men and women worldwide. It is characterized by the accumulation of extracellular amyloid-beta (A beta) plaques and neurofibrillary tangles inside neurons and dystrophic neurons. Several risk factors are associated with the early onset and progression of the disease. Although the initiating molecular events are not entirely known, in recent years it has become evident that environmental and/or nutritional factors may play a causal, disruptive, and/or protective role in the development of AD. While a direct causal role for aluminum or other transition metals (copper, zinc, iron) in AD has not yet been definitively demonstrated, epidemiological evidence suggests that elevated levels of these metals in the brain may be linked to the development or progression of AD. This review summarizes studies which implicate a role for several metals in contributing to or causing AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/jad-2007-11207 | DOI Listing |
Anal Chem
January 2025
State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Gansu Lanzhou 730000, China.
The pathogenesis of acute kidney injury (AKI) is a multifaceted process involving various mechanisms, with oxidative stress playing a crucial role in its development. Hypochlorite (HOCl) and cysteine (Cys) are indicators of oxidative stress in AKI pathophysiology, directly reflecting the degree of oxidative stress and disease severity. However, their exact mechanism of action in AKI pathophysiology remains unknown.
View Article and Find Full Text PDFChemSusChem
January 2025
Universita degli study di cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, SS 554 bivio per Sestu, 09042, Monserrato, ITALY.
Solvent-free techniques have gained considerable attention in recent years due to their environmental advantages and potential to enable chemical reactivities beyond the reach of traditional solution-based methods. Mechanochemistry has emerged as a groundbreaking approach to drive sustainable chemical processes. Despite its promise, some challenges still need to be explored, including the overlooked issue of material leaching during grinding, a phenomenon in which components from milling media or reaction vessels, such as stainless steel, unintentionally alter reaction outcomes.
View Article and Find Full Text PDFChemSusChem
December 2024
Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.
Catalyst design plays a critical role in ensuring sustainable and effective energy conversion. Electrocatalytic materials need to be able to control active sites and introduce defects in both acidic and alkaline electrolytes. Furthermore, producing efficient catalysts with a distinct surface structure advances our comprehension of the mechanism.
View Article and Find Full Text PDFOpen Med (Wars)
January 2025
Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
Purpose: This study aims to investigate the role and mechanism of -hydroxyl cinnamaldehyde (CMSP) in triggering ferroptosis of small cell lung cancer (SCLC) cells.
Methods: The impact of CMSP on ferroptosis in H1688 and SW1271 cells was assessed through cell experiments and biological information analysis. Moreover, the expression of heme oxygenase 1 (HMOX1) in SCLC tissue was examined.
Small
January 2025
Materials Genome Institute, Shanghai University, Shanghai, 200444, China.
The local structure plays a crucial role in oxygen redox reactions, which boosts the capacity of layered oxide cathodes for sodium-ion batteries. While studies on local structural ordering have primarily focused on the intra-layer ordering, there has been limited research on the inter-layer stacking for the layered cathode materials for sodium-ion batteries. In this work, the impact of the intra-layer and inter-layer local structural regulation on anionic kinetics and the structure stability are explored through experimental analysis and theoretical calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!