Glutamatergic inputs to the ventral tegmental area (VTA), thought crucial to the capacity of the VTA to detect and signal stimulus salience, have been reported to arise in but a few structures. However, the afferent system of the VTA comprises very abundant neurons within a large formation extending from the prefrontal cortex to the caudal brainstem. Neurons in nearly all parts of this continuum may be glutamatergic and equivalently important to VTA function. Thus, we sought to identify the full range of glutamatergic inputs to the VTA by combining retrograde transport of wheat germ agglutinin-bound gold after injections into the VTA with nonisotopic in situ hybridization of the vesicular glutamate transporters (VGLUTs) 1, 2, and 3. We found glutamatergic neurons innervating the VTA in almost all structures projecting there and that a majority of these are subcortical and VGLUT2 mRNA positive. The tremendous convergence of glutamatergic afferents from many brain areas in the VTA suggests that (1) the function of the VTA requires integration of manifold and diverse bits of information and (2) the activity of the VTA reflects the ongoing activities of various combinations of its afferents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3202987 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0012-07.2007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!