Amyotrophic lateral sclerosis (ALS) is characterized by motoneuron (MN) degeneration, generalized weakness, and muscle atrophy. The premature death of MNs is thought to be a determinant in the onset of this disease. In a transgenic mouse model of ALS expressing the G86R mutant superoxide dismutase 1 (mSOD1), we demonstrated previously that CREB (cAMP response element-binding protein)-binding protein (CBP) and histone acetylation levels were specifically decreased in nuclei of degenerating MNs. We show here that oxidative stress and mSOD1 overexpression can both impinge on CBP levels by transcriptional repression, in an MN-derived cell line. Histone deacetylase inhibitor (HDACi) treatment was able to reset proper acetylation levels and displayed an efficient neuroprotective capacity against oxidative stress in vitro. Interestingly, HDACi also upregulated CBP transcriptional expression in MNs. Moreover, when injected to G86R mice in vivo, the HDACi sodium valproate (VPA) maintained normal acetylation levels in the spinal cord, efficiently restored CBP levels in MNs, and significantly prevented MN death in these animals. However, despite neuroprotection, mean survival of treated animals was not significantly improved (<5%), and they died presenting the classical ALS symptoms. VPA was not able to prevent disruption of neuromuscular junctions, although it slightly delayed the onset of motor decline and retarded muscular atrophy to some extent. Together, these data show that neuroprotection can improve disease onset, but clearly provide evidence that one can uncouple MN survival from whole-animal survival and point to the neuromuscular junction perturbation as a primary event of ALS onset.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672753 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1139-07.2007 | DOI Listing |
Mol Microbiol
January 2025
Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (Unifesp), São Paulo, Brazil.
Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post-transcriptional level and may involve epitranscriptomic modifications of RNAs.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China. Electronic address:
Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive.
View Article and Find Full Text PDFCell Signal
January 2025
Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea. Electronic address:
Oxidative stress caused by reactive oxygen species (ROS) and superoxides is linked to various cancer-related biological events. Extracellular superoxide dismutase (SOD3), an antioxidant enzyme that removes superoxides, contributes to redox homeostasis and has the potential to regulate tumorigenesis. Histone deacetylase 6 (HDAC6), a major HDAC isoform responsible for mediating the deacetylation of non-histone protein substrates, also plays a role in cancer progression.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
Nonalcoholic fatty liver disease (NAFLD) is one of the main causes of chronic liver disorders following liver transplantation. The prorenin receptor (PRR) plays a role in glucose and lipid metabolism, and the hepatic dysregulation of PRR is associated with the upregulation of several molecular pathways, such as the mammalian target of rapamycin (mTOR) and Peroxisome proliferator-activated receptor (PPAR) that promotes hepatic lipogenesis and leads to lipid accumulation in hepatocytes by upregulation of lipogenic genes. PRR inhibition leads to a reduction in the hepatic expression of sortilin-1 and low-density lipoprotein receptor (LDLR) levels and down-regulation of pyruvate dehydrogenase (PDH) and acetyl-CoA carboxylase (ACC) and reduces fatty acids synthesis in hepatocytes.
View Article and Find Full Text PDFNeurochem Res
January 2025
Huazhong University of Science and Technology, Tongji Medical College, Wuhan, Hubei, 430000, China.
Epilepsy (EP) is a neurological disorder characterized by abnormal, sudden neuronal discharges. Seizures increase extracellular glutamate levels, causing excitotoxic damage. Glutamate transporter type 1 (GLT-1) and its human homologue excitatory amino acid transporter-2 (EAAT2) clear 95% of extracellular glutamate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!