Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Assessments of the importance of different routes of HIV-1 (HIV) transmission are vital for prioritization of control efforts. Lack of consistent direct data and large uncertainty in the risk of HIV transmission from HIV-contaminated injections has made quantifying the proportion of transmission caused by contaminated injections in sub-Saharan Africa difficult and unavoidably subjective. Depending on the risk assumed, estimates have ranged from 2.5% to 30% or more. We present a method based on an age-structured transmission model that allows the relative contribution of HIV-contaminated injections, and other routes of HIV transmission, to be robustly estimated, both fully quantifying and substantially reducing the associated uncertainty. To do this, we adopt a Bayesian perspective, and show how prior beliefs regarding the safety of injections and the proportion of HIV incidence due to contaminated injections should, in many cases, be substantially modified in light of age-stratified incidence and injection data, resulting in improved (posterior) estimates. Applying the method to data from rural southwest Uganda, we show that the highest estimates of the proportion of incidence due to injections are reduced from 15.5% (95% credible interval) (0.7%, 44.9%) to 5.2% (0.5%, 17.0%) if random mixing is assumed, and from 14.6% (0.7%, 42.5%) to 11.8% (1.2%, 32.5%) under assortative mixing. Lower, and more widely accepted, estimates remain largely unchanged, between 1% and 3% (0.1-6.3%). Although important uncertainty remains, our analysis shows that in rural Uganda, contaminated injections are unlikely to account for a large proportion of HIV incidence. This result is likely to be generalizable to many other populations in sub-Saharan Africa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1887593 | PMC |
http://dx.doi.org/10.1073/pnas.0610435104 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!