Aim: With the rationale that amyloid beta (AB) is toxic to the retina, we here assessed the role of TRAIL, a mediator of AB toxicity and related signal transduction, in a rat model. We also attempted to demonstrate possible protective effects of sigma 1 receptor agonists in these processes.
Methods: AB and the sigma 1 receptor agonist Pre-084 were injected intravitreally in the anaesthetised rat. In additional experiments, the sigma 1 receptor antagonist BD1047 was administered to assess specificity of the effects of Pre-084. Western blot analysis was performed on retinas to evaluate the expression of TRAIL and TRAIL receptors in the retina, as well as of Bax and phosphorylated JNK following the different treatments. Lactic dehydrogenase (LDH) levels were measured as a cytotoxicity marker.
Results: All TRAIL receptors were expressed in rat retinas. Intravitreal injection of AB in rat eyes induced overexpression of TRAIL and the proapoptotic protein Bax, as well as phosphorylation of JNK. All these effects of AB were abrogated by pretreatment with the sigma(1) receptor agonist Pre-084.
Conclusions: It is likely that TRAIL is a mediator of AB effects on the retina. In light of their specific inhibitory effects upon TRAIL expression, it is plausible to hypothesise that sigma(1) receptor agonists could represent potential pharmacological tools for restraining AB related retinal damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2001020 | PMC |
http://dx.doi.org/10.1136/bjo.2007.118570 | DOI Listing |
Cancer Lett
January 2025
Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA. Electronic address:
Anorexia is a major cause of cancer cachexia and is induced by growth differentiation factor-15 (GDF15), which activates the rearranged during transfection (RET) protein tyrosine kinase in the hindbrain through GDF family receptor α-like (GFRAL), raising the possibility of targeting RET for cancer cachexia treatment. RET-altered cancer patients treated with RET-selective kinase inhibitors gain weight, however, it is unclear whether this results from tumor regression that improves the overall health of patients. Thus, the potential of using a RET inhibitor to address cancer cachexia remains unknown.
View Article and Find Full Text PDFRSC Med Chem
November 2024
Department of Drug and Health Sciences, University of Catania Viale A. Doria 6 95125 Catania Italy (+39) 095 7384273.
Inflammatory pain represents one of the unmet clinical needs for patients, as conventional therapies cause several side effects. Recently, new targets involved in inflammatory pain modulation have been identified, including the sigma-1 receptor (σ1R). Selective σ1R antagonists have demonstrated analgesic efficacy in acute and chronic inflammatory pain models.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
MTA-SE Lendület "Momentum" Diabetes Research Group, 1083 Budapest, Hungary.
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease. Current treatments for DKD do not halt renal injury progression, highlighting an urgent need for therapies targeting key disease mechanisms. Our previous studies demonstrated that activating the Sigma-1 receptor (S1R) with fluvoxamine (FLU) protects against acute kidney injury by inhibiting inflammation and ameliorating the effect of hypoxia.
View Article and Find Full Text PDFJ Cell Biol
February 2025
Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
Mono(ADP-ribosyl)ation (MARylation) is emerging as a critical regulator of ribosome function and translation. Herein, we demonstrate that RACK1, an integral component of the ribosome, is MARylated by the mono(ADP-ribosyl) transferase (MART) PARP14 in ovarian cancer cells. MARylation of RACK1 is required for stress granule formation and promotes the colocalization of RACK1 in stress granules with G3BP1, eIF3η, and 40S ribosomal proteins.
View Article and Find Full Text PDFChem Sci
December 2024
Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Centre of Biological Optoelectronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 P. R. China
Here, we report a water-induced supramolecular polymer adhesive formed from confined water and an intrinsically amphiphilic macrocyclic self-assembly in a nanophase-separated structure. The selenium-containing crown ether macrocycle, featuring a strong hydrophilic hydrogen-bond receptor (selenoxide) and a synergistic hydrophobic selenium-substituted crown core, confines water within a segregated, interdigitated architecture. While water molecules typically freeze around 0 °C, the confined water in this supramolecular polymer remains in a liquid-like state down to -80 °C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!