Background: Despite recent advances, severe burn is one of the most common problems faced in the emergency room. Major thermal injury induces the activation of an inflammatory cascade resulting in local tissue damage, to contribute to the development of subsequent damage of multiple organs distant from the original burn wound.

Objective: Silymarin, the major component of milk thistle has been shown to have antioxidant properties. In the present study, we investigated the putative antioxidant effect of local or systemic silymarin treatment on burn-induced oxidative tissue injury.

Methods: Wistar albino rats were exposed to 90 degrees C bath for 10 s to induce burn. Silymarin either locally (30 mg/kg) applied on 4 cm(2) area or locally+systemically (50 mg/kg, p.o.) was administered after the burn and repeated twice daily. Rats were decapitated 48 h after injury and blood was collected for tumor necrosis factor-alpha (TNF-alpha) and lactate dehydrogenase (LDH) activity. In skin tissue samples malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity, and luminol-lucigenin chemiluminescense (CL) were measured in addition to the histological evaluation.

Results: Burn caused a significant increase in TNF-alpha and LDH levels. MDA levels were increased and GSH levels were decreased in the skin at 48 h after-burn. Both local and systemic silymarin treatments significantly reversed these parameters. The raised MPO activity and luminol-lucigenin CL were also significantly decreased.

Conclusion: Results indicate that both systemic and local administration of silymarin was effective against burn-induced oxidative damage and morphological alterations in rat skin. Therefore, silymarin merits consideration as a therapeutic agent in the treatment of burns.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.burns.2006.10.407DOI Listing

Publication Analysis

Top Keywords

burn-induced oxidative
12
local systemic
8
systemic silymarin
8
gsh levels
8
mpo activity
8
activity luminol-lucigenin
8
silymarin
7
burn
5
silymarin antioxidant
4
antioxidant component
4

Similar Publications

Burn-induced mitochondrial dysfunction in hepatocytes: The role of methylation-controlled J protein silencing.

J Trauma Acute Care Surg

February 2025

From the Division of Gastrointestinal, Trauma, and Endocrine Surgery, Department of Surgery (A.P., K.M.M., A.C.Q., E.J.K., J.-P.I.), Division of Burn Research (E.J.K.), and Division of Alcohol Research (E.J.K.), Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado.

Background: Burn injuries trigger a systemic hyperinflammatory response, leading to multiple organ dysfunction, including significant hepatic damage. The liver plays a crucial role in regulating immune responses and metabolism after burn injuries, making it critical to develop strategies to mitigate hepatic impairment. This study investigates the role of methylation-controlled J protein (MCJ), an inner mitochondrial protein that represses complex I in burn-induced oxidative stress and mitochondrial dysfunction, using an in vitro Alpha Mouse Liver 12 cell model.

View Article and Find Full Text PDF

A Multifunctional Nanodrug Co-Delivering VEGF-siRNA and Dexamethasone for Synergistic Therapy in Ocular Neovascular Diseases.

Int J Nanomedicine

November 2024

Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People's Republic of China.

Introduction: Oxidant stress, abnormal angiogenesis, and inflammation are three key factors contributing to the development of ocular neovascular diseases (ONDs). This study aims to develop a multifunctional nanodrug, DEX@MPDA-Arg@Si (DMAS), which integrates mesoporous polydopamine, vascular endothelial growth factor (VEGF)-siRNA, and dexamethasone (DEX) to address these therapeutic targets.

Methods: Physicochemical properties of DMAS were measured using transmission electron microscopy and a nanoparticle size analyzer.

View Article and Find Full Text PDF

Two novel membranes based on collagen and two polyphenols, taxifolin pentaglutarate (TfG5) and a conjugate of taxifolin with glyoxylic acid (DfTf), were prepared. Fourier transform infrared spectroscopy examination confirmed the preservation of the triple helical structure of collagen. A scanning electron microscopy study showed that both materials had a porous structure.

View Article and Find Full Text PDF

Background: Corneal neovascularization (CNV) is a sight-threatening condition that necessitates epigenetic control. The role of lysine-specific demethylase 1 (LSD1) in CNV remains unclear, despite its established significance in tumor angiogenesis regulation.

Methods: An alkali burn-induced CNV mouse model was used .

View Article and Find Full Text PDF

Development of an injectable oxidized dextran/gelatin hydrogel capable of promoting the healing of alkali burn-associated corneal wounds.

Int J Biol Macromol

July 2024

National Engineering Research Center for Biomaterials, Chuanda-Jinbo Joint Research Center, Sichuan University, Chengdu, 610064, China.

The cornea serves as an essential shield that protects the underlying eye from external conditions, yet it remains highly vulnerable to injuries that could lead to blindness and scarring if not promptly and effectively treated. Excessive inflammatory response constitute the primary cause of pathological corneal injury. This study aimed to develop effective approaches for enabling the functional repair of corneal injuries by combining nanoparticles loaded with anti-inflammatory agents and an injectable oxidized dextran/gelatin/borax hydrogel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!