We describe the synthesis of thermoresponsive polymers made from N-isopropylacrylamide and varying amounts of a thiol-containing co-monomer, N,N'-cystaminebisacrylamide (P(NIPAm-co-CBAm)). Infrared spectroscopy revealed a backbone similar to that seen with pure PNIPAm. UV-vis spectroscopy showed that P(NIPAm-co-CBAm) undergoes a thermoresponsive phase transition around 32 degrees C in aqueous solution. The presence of the thiol groups enabled the polymer to adsorb onto gold surfaces. Following adsorption onto a gold surface, X-ray photoelectron spectroscopy showed a carbon/gold atomic ratio of 0.93 for a sample without CBAm and a ratio of 1.61 for a P(NIPAm-co-CBAm) sample with 0.20% CBAm. Quartz crystal microbalance (QCM) analysis showed increases in the mass of polymer adsorbed when the CBAm content in the polymer increased. The thermoresponsive behavior of the thin films on gold was investigated with contact angle and dissipative QCM analysis. Contact angles were measured for polymer films at both 25 and 60 degrees C. The largest temperature-induced alteration in the contact angle was seen with the 1.00% CBAm sample. Similarly, QCM-D results showed a significantly greater change in frequency and dissipation following a temperature change when CBAm was present than in pure NIPAm polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la700624gDOI Listing

Publication Analysis

Top Keywords

thermoresponsive behavior
8
thin films
8
films gold
8
qcm analysis
8
contact angle
8
cbam
5
adsorption thermoresponsive
4
behavior polyn-isopropylacrylamide-co-nn'-cystaminebisacrylamide
4
polyn-isopropylacrylamide-co-nn'-cystaminebisacrylamide thin
4
gold
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!