In this article, a new technique we call Beam Action Spectroscopy via Inelastic Scattering (BASIS) is demonstrated. BASIS takes advantage of the sensitivity of rotational state distributions in a supersonic molecular beam to inelastic scattering within the beam. We exploit BASIS to achieve increased sensitivity in two very different types of experiments. In the first, the UV photodissociation spectrum of OClO is recovered by monitoring intensity changes in the pure rotational transition of a spectator molecule (OCS) downstream from the nozzle, revealing a new vibrational structure in the region between 30,000 and 36,000 cm(-1). In the second, the mid-IR vibrational spectrum of acetylene is recorded simply by monitoring a single pure rotational transition of OCS co-expanded with acetylene. The technique may prove particularly fruitful when an excitation process produces product dark states that are not easily probed by conventional spectroscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp0708650 | DOI Listing |
Phys Rev Lett
December 2024
Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00187 Roma, Italy.
Hydrogen hydrates exhibit a rich phase diagram influenced by both pressure and temperature, with the so-called C_{2} phase emerging prominently above 2.5 GPa. In this phase, hydrogen molecules are densely packed within a cubic icelike lattice and the interaction with the surrounding water molecules profoundly affects their quantum rotational dynamics.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan.
Dipole toroidal modes appear in many fields of physics. In nuclei, such a mode was predicted more than 50 years ago, but clear experimental evidence was lacking so far. Using a combination of high-resolution inelastic scattering experiments with photons, electrons, and protons, we identify for the first time candidates for toroidal dipole excitations in the nucleus ^{58}Ni and demonstrate that transverse electron scattering form factors represent a relevant experimental observable to prove their nature.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, 05513-970 São Paulo, SP, Brazil.
Molecular dynamics (MD) simulation is used to study the intermolecular dynamics in the THz frequency range of the ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide, [C2C1im][FSI]. Non-polarizable and polarizable models for classical MD simulation are compared using as quality criteria ab initio molecular dynamics (AIMD) and experimental data from far-infrared (FIR) spectroscopy and previously published data of inelastic x-ray scattering (IXS). According to data from IXS spectroscopy, incorporating polarization in the classical MD simulation has relatively little effect on the dispersion curve (excitation frequency vs wavevector) for longitudinal acoustic modes.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
Institute Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany.
Resonant inelastic X-ray scattering (RIXS) is an ideal X-ray spectroscopy method to push the combination of energy and time resolutions to the Fourier transform ultimate limit, because it is unaffected by the core-hole lifetime energy broadening. Also, in pump-probe experiments the interaction time is made very short by the same core-hole lifetime. RIXS is very photon hungry so it takes great advantage from high-repetition-rate pulsed X-ray sources like the European XFEL.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, SE-106 91, Sweden.
Superinsulating nanofibrillar cellulose foams have the potential to replace fossil-based insulating materials, but the development is hampered by the moisture-dependent heat transport and the lack of direct measurements of phonon transport. Here, inelastic neutron scattering is used together with wide angle X-ray scattering (WAXS) and small angle neutron scattering to relate the moisture-dependent structural modifications to the vibrational dynamics and phonon transport and scattering of cellulose nanofibrils from wood and tunicate, and wood cellulose nanocrystals (W-CNC). The moisture interacted primarily with the disordered regions in nanocellulose, and WAXS showed that the crystallinity and coherence length increased as the moisture content increased.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!