Approximate entropy-based epileptic EEG detection using artificial neural networks.

IEEE Trans Inf Technol Biomed

Institute of Advanced Biomedical Techniques, G. D. Annunzio University, 66100 Chieti, Italy.

Published: May 2007

The electroencephalogram (EEG) signal plays an important role in the diagnosis of epilepsy. The EEG recordings of the ambulatory recording systems generate very lengthy data and the detection of the epileptic activity requires a time-consuming analysis of the entire length of the EEG data by an expert. The traditional methods of analysis being tedious, many automated diagnostic systems for epilepsy have emerged in recent years. This paper proposes a neural-network-based automated epileptic EEG detection system that uses approximate entropy (ApEn) as the input feature. ApEn is a statistical parameter that measures the predictability of the current amplitude values of a physiological signal based on its previous amplitude values. It is known that the value of the ApEn drops sharply during an epileptic seizure and this fact is used in the proposed system. Two different types of neural networks, namely, Elman and probabilistic neural networks, are considered in this paper. ApEn is used for the first time in the proposed system for the detection of epilepsy using neural networks. It is shown that the overall accuracy values as high as 100% can be achieved by using the proposed system.

Download full-text PDF

Source
http://dx.doi.org/10.1109/titb.2006.884369DOI Listing

Publication Analysis

Top Keywords

neural networks
16
proposed system
12
epileptic eeg
8
eeg detection
8
amplitude values
8
eeg
5
approximate entropy-based
4
epileptic
4
entropy-based epileptic
4
detection
4

Similar Publications

Deep learning has emerged as a powerful tool in medical imaging, particularly for corneal topographic map classification. However, the scarcity of labeled data poses a significant challenge to achieving robust performance. This study investigates the impact of various data augmentation strategies on enhancing the performance of a customized convolutional neural network model for corneal topographic map classification.

View Article and Find Full Text PDF

Enhancing beer authentication, quality, and control assessment using non-invasive spectroscopy through bottle and machine learning modeling.

J Food Sci

January 2025

Digital Agriculture, Food and Wine Research Group, School of Agriculture, Food and Ecosystem Science, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia.

Fraud in alcoholic beverages through counterfeiting and adulteration is rising, significantly impacting companies economically. This study aimed to develop a method using near-infrared (NIR) spectroscopy (1596-2396 nm) through the bottle, along with machine learning (ML) modeling for beer authentication, quality traits, and control assessment. For this study, 25 commercial beers from different brands, styles, and three types of fermentation were used.

View Article and Find Full Text PDF

Bruises can affect the appearance and nutritional value of apples and cause economic losses. Therefore, the accurate detection of bruise levels and bruise time of apples is crucial. In this paper, we proposed a method that combines a self-designed multispectral imaging system with deep learning to accurately detect the level and time of bruising on apples.

View Article and Find Full Text PDF

Hardware neural networks could perform certain computational tasks orders of magnitude more energy-efficiently than conventional computers. Artificial neurons are a key component of these networks and are currently implemented with electronic circuits based on capacitors and transistors. However, artificial neurons based on memristive devices are a promising alternative, owing to their potentially smaller size and inherent stochasticity.

View Article and Find Full Text PDF

Predicting few disinfection byproducts in the water distribution systems using machine learning models.

Environ Sci Pollut Res Int

January 2025

Research Engineer I, Applied Research Center for Environment & Marine Studies, Research Institute, King Fahd University of Petroleum & Minerals, 31261, Dhahran, Saudi Arabia.

Concerns regarding disinfection byproducts (DBPs) in drinking water persist, with measurements in water treatment plants (WTPs) being relatively easier than those in water distribution systems (WDSs) due to accessibility challenges, especially during adverse weather conditions. Machine learning (ML) models offer improved predictions of DBPs in WDSs. This study developed multiple ML models to predict Trihalomethanes (THMs), Haloacetic Acids (HAAs), Dichloroacetonitrile (DCAN), and N-nitrosodimethylamine (NDMA) in WDSs using data collected over 13 years (2008-2020) from 113 water supply systems (WSS) in Ontario.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!