In diverse littoral communities, biotic interactions play an important role in community regulation. This article reviews how eutrophication modifies biotic interactions in littoral macroalgal communities. Eutrophication causes blooms of opportunistic algae, increases epibiotism, and affects regulation by grazers. Opportunistic algae and epibionts harm colonization and growth of perennial algae. Grazing regulates the density and species composition of macroalgal communities, especially at the early stage of algal colonization. Eutrophication supports higher grazer densities by increasing the availability and quality of algae to grazers. This may, on the one hand, enhance the capability of grazers to regulate and counteract the increase of harmful, bloom-forming macroalgae; on the other hand, it may increase grazing pressure on perennial species, with a poor tolerance of grazing. In highly eutrophic conditions, bloom-forming algae may also escape grazing control and accumulate. Increasing epibiotism and grazing threaten in particular the persistence of habitat-forming perennials such as the bladderwrack. An interesting property of biotic interactions is that they do not remain fixed but are able to evolve, as the traits of the interacting species adapt to each other and to abiotic conditions. The potential of plants and grazers to adapt is crucial to their chances to survive in changing environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1579/0044-7447(2007)36[203:mcftco]2.0.co;2 | DOI Listing |
Urbanization as a major driver of global change modifies biodiversity patterns and the abundance and interactions among species or functional species groups. For example, urbanization can negatively impact both predator-prey and mutualistic relationships. However, empirical studies on how urbanization modifies biotic, particularly multitrophic, interactions are still limited.
View Article and Find Full Text PDFBiodivers Data J
January 2025
Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, China Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University Baoding China.
Background: The genus Pocock, 1901 previously included 25 known species and one subspecies from Asia, 12 species and one subspecies were reported in China.
New Information: Five new species of Pocock, 1901 from southern China are described: (♂♀) from Hainan, (♂♀) from Chongqing, (♂♀) from Hunan, (♂) from Sichuan and (♂♀) from south part of Shaanxi. DNA barcodes of the new species described herein are provided.
Environ Res
January 2025
State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong Kowloon, 999077, China. Electronic address:
Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical found in high levels in wastewater worldwide. Aerobic denitrification is a promising alternative to conventional nitrogen removal processes. However, the effects of BPA on this novel nitrogen removal process have rarely been reported.
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Mangrove ecosystem has attracted global attention as a hotspot for mercury (Hg) methylation. Although numerous biotic and abiotic parameters have been reported to influence methylmercury (MeHg) production in sediments, the key factors determining the elevated MeHg levels in mangrove wetlands have not been well addressed. In this study, Hg levels in the sediments from different habitats (mudflats, mangrove fringe, and mangrove interior) in the Futian mangrove wetland were investigated, aiming to characterize the predominant factors affecting the MeHg production and distinguish the key microbial taxa responsible for Hg methylation.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Faculty of Biology, Technion, Israel Institute of Technology, Haifa, Israel.
Cyanobacterial distributions are shaped by abiotic factors including temperature, light and nutrient availability as well as biotic factors such as grazing and viral infection. In this study, we investigated the abundances of T4-like and T7-like cyanophages and the extent of picocyanobacterial infection in the cold, high-nutrient-low-chlorophyll, sub-Antarctic waters of the southwest Pacific Ocean during austral spring. Synechococcus was the dominant picocyanobacterium, ranging from 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!