This article focuses on the ecological role of benthic macrofauna on nutrient dynamics and benthic-pelagic coupling in the Baltic Sea with relation to eutrophication. Generally, benthic macrofaunal activities have large effects on sediment biogeochemistry and often with stimulatory effects on processes that counteract eutrophication, i.e., denitrification and increased phosphorus retention of the sediment. The degree of faunal impact on such processes varies depending on faunal density and functional group composition. The effect of macrofaunal activities on sediment nutrient dynamics can also result in a higher nitrogen: phosporus ratio of the sediments efflux compared with sediments without macrofauna. Increased internal nutrient loading during eutrophication-induced anoxia is suggested to be caused both by altered sediment biogeochemical processes and through reduced or lost bioturbating macrofauna and thereby a reduced stimulatory effect from their activities on natural purification processes of the Baltic Sea ecosystem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1579/0044-7447(2007)36[161:tiobmf]2.0.co;2 | DOI Listing |
Sci Total Environ
January 2025
Leibniz Institute for Baltic Sea (IOW), Marine Chemistry Department, Seestraße 15, 18119 Rostock, Germany; IOW, Seestraße 15, 18119 Rostock, Germany. Electronic address:
The Baltic Sea, a semi-enclosed marginal sea with a catchment area four times its size, acts as a sink and continues to show detectable levels of persistent organic pollutants (POPs) in its sediments. This is attributed to the synthesis and industrial use of commercial polychlorinated biphenyls (PCB) products, as well as the widespread use and discharge of certain chlorinated pesticides into the natural environment during the last century. Our study investigates chlorinated hydrocarbon pollutants, the polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and its metabolites as well as hexachlorobenzene (HCB) in sediments based on several short sediment cores from different basins covering almost the entire Baltic Sea.
View Article and Find Full Text PDFEnviron Microbiome
January 2025
Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), 18119, Rostock, Germany.
Background: Zostera marina is an important ecosystem engineer influencing shallow water environments and possibly shaping the microbiota in surrounding sediments and water. Z. marina is typically found in marine systems, but it can also proliferate under brackish conditions.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia.
The grey seal () is a fish-eating mammal and an apex predator in the Baltic Sea. It serves as the definitive host for several parasite species that utilize fish as intermediate or paratenic hosts. This study aimed to determine the endoparasite fauna of grey seals by-caught in the Latvian commercial coastal fishery and to analyze the impact of parasites on the seals' nutritional status.
View Article and Find Full Text PDFViruses
December 2024
Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany.
In the original publication [...
View Article and Find Full Text PDFPathogens
December 2024
Latvian Biomedical Research and Study Centre, Ratsupites Street 1, k-1, LV-1067 Riga, Latvia.
Tan spot caused by is a severe threat to wheat production in all major wheat-growing regions. Sustainable tan spot control can be achieved by an integrated approach, including responsible management of fungicide sprays. The data about the sensitivity of to various fungicides in the Baltic Sea region are rare.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!