Importance of several cysteine residues for the chloride conductance of trout anion exchanger 1 (tAE1).

J Cell Physiol

Laboratoire de Physiologie Cellulaire et Moléculaire, UMR 6548, CNRS-Université de Nice, Bâtiment de Sciences Naturelles, Parc Valrose, Nice Cedex 2, France.

Published: October 2007

In this study, we devised a cysteine-focused point mutation analysis of the chloride channel function of trout anion exchanger 1 (tAE1) expressed in X. laevis oocytes. Seven cysteines, belonging to the transmembrane domain of tAE1, were mutated into serines (either individually or in groups) and the effects of these mutations on the chloride conductance of injected oocytes were measured. We showed that three cysteines were essential for the functional expression of tAE1. Namely, mutations C462S, C583S and C588S reduced Cl(-) conductance by 68%, 52% and 83%, respectively, when compared to wild type tAE1. These residual conductances were still inhibited by 0.5 mM niflumic acid. Western blot experiments demonstrated that C462 was involved in protein expression onto the plasma membrane. A mutant devoid of this residue was unable to express onto the plasma membrane, especially if several other cysteines were missing: consequently, the cysteine-less mutant of tAE1 was not functional. C583 and C588 were involved in the channel function of tAE1 as shown by anion substitution experiments proving that selectivity of the mutated pore differs from the wild type one. On the contrary, they were not involved in the Cl(-)/HCO(3)(-) exchange function of tAE1, as demonstrated by intracellular pH measurements. These and several complementary mutations allow us to conclude that a mutant of tAE1 containing the sole C462 can drive a marginal Cl(-) current; however, the minimal configuration necessary to get optimal functional expression of the tAE1 chloride channel is that of a mutant containing unaffected residues C462, C583 and C588.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.21093DOI Listing

Publication Analysis

Top Keywords

tae1
10
chloride conductance
8
trout anion
8
anion exchanger
8
exchanger tae1
8
chloride channel
8
channel function
8
functional expression
8
expression tae1
8
wild type
8

Similar Publications

sp. nov., a paraoxon-degrading bacterium isolated from red pepper cultivation soil.

Int J Syst Evol Microbiol

May 2024

Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong, Daejeon 34134, Republic of Korea.

A bacterial strain designated MMS21-TAE1-1, capable of degrading paraoxon, was isolated from red pepper soil (36° 25' 26.0″ N, 126° 25' 47.0″ E) and subjected to polyphasic taxonomic characterisation.

View Article and Find Full Text PDF

Gram-negative bacteria can antagonize neighboring microbes using a type VI secretion system (T6SS) to deliver toxins that target different essential cellular features. Despite the conserved nature of these targets, T6SS potency can vary across recipient species. To understand the functional basis of intrinsic T6SS susceptibility, we screened for essential Escherichia coli (Eco) genes that affect its survival when antagonized by a cell wall-degrading T6SS toxin from Pseudomonas aeruginosa, Tae1.

View Article and Find Full Text PDF

Gram-negative bacteria can antagonize neighboring microbes using a type VI secretion system (T6SS) to deliver toxins that target different essential cellular features. Despite the conserved nature of these targets, T6SS potency can vary across recipient species. To understand the molecular basis of intrinsic T6SS susceptibility, we screened for essential genes that affect its survival when antagonized by a cell wall-degrading T6SS toxin from , Tae1.

View Article and Find Full Text PDF

Members of the bacterial 6SS midase ffector (Tae) superfamily of toxins are delivered between competing bacteria to degrade cell wall peptidoglycan. Although Taes share a common substrate, they exhibit distinct antimicrobial potency across different competitor species. To investigate the molecular basis governing these differences, we quantitatively defined the functional determinants of Tae1 from PAO1 using a combination of nuclear magnetic resonance and a high-throughput in vivo genetic approach called deep mutational scanning (DMS).

View Article and Find Full Text PDF

Discovering the N-Terminal Methylome by Repurposing of Proteomic Datasets.

J Proteome Res

September 2021

Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States.

Protein α-N-methylation is an underexplored post-translational modification involving the covalent addition of methyl groups to the free α-amino group at protein N-termini. To systematically explore the extent of α-N-terminal methylation in yeast and humans, we reanalyzed publicly accessible proteomic datasets to identify N-terminal peptides contributing to the α-N-terminal methylome. This repurposing approach found evidence of α-N-methylation of established and novel protein substrates with canonical N-terminal motifs of established α-N-terminal methyltransferases, including human NTMT1/2 and yeast Tae1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!