The anti-neoplastic effects of 1,25-dihydroxyvitamin D3 (1,25D) are well documented in numerous tumor cell systems and animal models of cancer. However, despite this pre-clinical success, the clinical use of 1,25D is currently impeded by the dose-limiting hypercalcemia, and the risk of development of resistance to 1,25D. In this study, we investigated the mechanism of resistance to 1,25D of HL60-40AF cells, a model of drug-resistant acute myeloid leukemia, derived from HL60 cells by cultivation in the presence of 1,25D. The data indicate that transcriptional activity of vitamin D receptor (VDR) in 40AF cells increases only briefly when the cells are treated with 1,25D, despite greater basal cellular levels of VDR protein in the resistant than in the 1,25D-sensitive cells. Analysis of the 40AF VDR mRNA sequence indicated alterations in the 5' untranslated region (UTR), but coding domain variations were not observed. When resistance to 1,25D-induced differentiation of 40AF cells was reversed by a combination of 1,25D with potentiators of differentiation (plant derived antioxidants and a p38MAPK inhibitor), an increase in the level of nuclear VDR, as well as an increase in CYP24 mRNA expression was observed. These data suggest that decreased ability of 1,25D to induce VDR nuclear localization and the consequent VDR target gene transcription may be an important reason for the resistance of 40AF cells to 1,25D. Further, our data show that VDR localization and phosphorylation can be increased by combining 1,25D with potentiators of differentiation. Analysis of the mechanisms that underlie the reduction and potentiation of 1,25D-mediated changes in VDR activity may lead to the identification of new cellular targets that enhance 1,25D-induced monocytic differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843698PMC
http://dx.doi.org/10.1002/jcp.21150DOI Listing

Publication Analysis

Top Keywords

40af cells
12
125d
10
resistance 125d-induced
8
125d-induced differentiation
8
acute myeloid
8
myeloid leukemia
8
cells
8
hl60-40af cells
8
transcriptional activity
8
nuclear localization
8

Similar Publications

Recent clinical trials aimed at improved treatment of AML by administration of vitamin D derivatives showed unremarkable results, suggesting development of vitamin D resistance in patients' AML blasts. Since mechanisms of vitamin D resistance are not clear, we studied 40AF cells, a subline of HL60 cells that can proliferate in the presence of 1α,25-dihydroxyvitamin D₃ (1,25D). We found that mRNA and protein levels of HPK1, an upstream MAP4 kinase, are dramatically increased in 40AF cells, and HPK1 protein is further increased when the 1,25D resistance of 40AF cells is partially reversed by the addition of carnosic acid and p38MAPK inhibitor SB202190 (DCS cocktail).

View Article and Find Full Text PDF

The anti-neoplastic effects of 1,25-dihydroxyvitamin D3 (1,25D) are well documented in numerous tumor cell systems and animal models of cancer. However, despite this pre-clinical success, the clinical use of 1,25D is currently impeded by the dose-limiting hypercalcemia, and the risk of development of resistance to 1,25D. In this study, we investigated the mechanism of resistance to 1,25D of HL60-40AF cells, a model of drug-resistant acute myeloid leukemia, derived from HL60 cells by cultivation in the presence of 1,25D.

View Article and Find Full Text PDF

C/EBPbeta is known to be important for monocytic differentiation and macrophage function. Here, we found that expression of all three C/EBPbeta isoforms induced in HL60 cells by 1,25-dihydroxyvitamin D3 (1,25D) was upregulated in a sustained manner that correlates with the appearance of monocytic phenotype and with the G1 phase cell cycle arrest. In 1,25D-resistant HL60-40AF cells, isoforms beta-1 and beta-3 were expressed at levels comparable to 1,25D-sensitive HL60-G cells, but isoform beta-2 was difficult to detect.

View Article and Find Full Text PDF

New insights into the human 5-HT4 receptor binding site: exploration of a hydrophobic pocket.

Br J Pharmacol

October 2004

Biocis, UMR-8076 (CNRS), Faculté de Pharmacie, Université Paris-Sud, 5 rue JB Clément, 92296 Châtenay-Malabry, France.

A body of evidences suggests that a hydrophobic pocket of the human 5-HT(4) receptor contributes to the high affinity of some bulky 5-HT(4) ligands. A thorough study of this pocket was performed using mutagenesis and molecular modeling. Ligand binding or competition studies with selected bulky ligands (RS39604, RS100235, [(3)H]GR113808 and ML11411) and small ligands (5-HT and ML10375) were carried out on wild-type and mutant receptors (W7.

View Article and Find Full Text PDF

Drug resistance that occurs during cancer chemotherapy has been a major problem in controlling neoplastic progression. To study the cellular mechanisms of acquired drug resistance we developed 1,25-dihydroxyvitamin D3 (1,25D3)-resistant sublines of promyelocytic leukemia HL60 cells which have increased proliferation rates (Exp. Cell Res.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!