Detecting and overcoming systematic errors in genome-scale phylogenies.

Syst Biol

Canadian Institute for Advanced Research, Centre Robert Cedergren, Département de Biochimie, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, H3T 1J4, Canada.

Published: June 2007

Genome-scale data sets result in an enhanced resolution of the phylogenetic inference by reducing stochastic errors. However, there is also an increase of systematic errors due to model violations, which can lead to erroneous phylogenies. Here, we explore the impact of systematic errors on the resolution of the eukaryotic phylogeny using a data set of 143 nuclear-encoded proteins from 37 species. The initial observation was that, despite the impressive amount of data, some branches had no significant statistical support. To demonstrate that this lack of resolution is due to a mutual annihilation of phylogenetic and nonphylogenetic signals, we created a series of data sets with slightly different taxon sampling. As expected, these data sets yielded strongly supported but mutually exclusive trees, thus confirming the presence of conflicting phylogenetic and nonphylogenetic signals in the original data set. To decide on the correct tree, we applied several methods expected to reduce the impact of some kinds of systematic error. Briefly, we show that (i) removing fast-evolving positions, (ii) recoding amino acids into functional categories, and (iii) using a site-heterogeneous mixture model (CAT) are three effective means of increasing the ratio of phylogenetic to nonphylogenetic signal. Finally, our results allow us to formulate guidelines for detecting and overcoming phylogenetic artefacts in genome-scale phylogenetic analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10635150701397643DOI Listing

Publication Analysis

Top Keywords

systematic errors
12
data sets
12
phylogenetic nonphylogenetic
12
detecting overcoming
8
data set
8
nonphylogenetic signals
8
data
6
phylogenetic
6
systematic
4
overcoming systematic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!