A reduced capacity for mitochondrial fatty acid oxidation in skeletal muscle has been proposed as a major factor leading to the accumulation of intramuscular lipids and their subsequent deleterious effects on insulin action. Here, we examine markers of mitochondrial fatty acid oxidative capacity in rodent models of insulin resistance associated with an oversupply of lipids. C57BL/6J mice were fed a high-fat diet for either 5 or 20 weeks. Several markers of muscle mitochondrial fatty acid oxidative capacity were measured, including (14)C-palmitate oxidation, palmitoyl-CoA oxidation in isolated mitochondria, oxidative enzyme activity (citrate synthase, beta-hydroxyacyl CoA dehydrogenase, medium-chain acyl-CoA dehydrogenase, and carnitine palmitoyl-transferase 1), and expression of proteins involved in mitochondrial metabolism. Enzyme activity and mitochondrial protein expression were also examined in muscle from other rodent models of insulin resistance. Compared with standard diet-fed controls, muscle from fat-fed mice displayed elevated palmitate oxidation rate (5 weeks +23%, P < 0.05, and 20 weeks +29%, P < 0.05) and increased palmitoyl-CoA oxidation in isolated mitochondria (20 weeks +49%, P < 0.01). Furthermore, oxidative enzyme activity and protein expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha, uncoupling protein (UCP) 3, and mitochondrial respiratory chain subunits were significantly elevated in fat-fed animals. A similar pattern was present in muscle of fat-fed rats, obese Zucker rats, and db/db mice, with increases observed for oxidative enzyme activity and expression of PGC-1alpha, UCP3, and subunits of the mitochondrial respiratory chain. These findings suggest that high lipid availability does not lead to intramuscular lipid accumulation and insulin resistance in rodents by decreasing muscle mitochondrial fatty acid oxidative capacity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/db07-0093 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China.
Ferroptosis is a unique cell death mode that relies on iron and lipid peroxidation (LPO) and is extensively utilized to treat drug-resistant tumor. However, like the other antitumor model, requirement of oxygen limited its application in treating the malignant tumors in anaerobic environments, just as photodynamic therapy, a very promising anticancer therapy. Here, we show that an iridium(III) complex (Ir-dF), which was often used in proton-coupled electron transport (PCET) process, can induce efficient cell death upon photo irradiation, which can be effectively protected by the typical ferroptosis inhibitor Fer-1 but not by the classic iron chelating agents and ROS scavengers.
View Article and Find Full Text PDFDiabetologia
January 2025
Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
Aims/hypothesis: Existing evidence on the relationship between intake of monounsaturated fatty acids (MUFAs) and type 2 diabetes is conflicting. Few studies have examined whether MUFAs from plant or animal sources (MUFA-Ps and MUFA-As, respectively) exhibit differential associations with type 2 diabetes. We examined associations of intakes of total MUFAs, MUFA-Ps and MUFA-As with type 2 diabetes risk.
View Article and Find Full Text PDFPlanta
January 2025
College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR).
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom.
Purpose: To investigate the effect of average intraocular pressure (IOP) on the true rate of glaucoma progression (RoP) in the United Kingdom Glaucoma Treatment Study (UKGTS).
Methods: UKGTS participants were randomized to placebo or Latanoprost drops and monitored for up to two years with visual field tests (VF, 24-2 SITA standard), IOP measurements, and optic nerve imaging. We included eyes with at least three structural or functional assessments (VF with <15% false-positive errors).
J Agric Food Chem
January 2025
College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China.
Norvaline is a nonproteinogenic amino acid and an important food ingredient supplement for healthy food. In this study, dl-norvaline administration reduced body weight by more than 40% and improved glucose metabolism and energy metabolism in obese mice induced by a high-fat diet (HFD). Combination analysis of microbiome and metabolomics showed that dl-norvaline supplementation regulated gut bacteria structure, such as increasing beneficial bacteria (, , , , , , , and ) and decreasing harmful bacteria (, , , , , and ) and modulated the metabolites involved in arachidonic acid metabolism, thus further promoting short-chain fatty acid production and improving gut barrier, thereby inflammatory responses and oxidative stress were ameliorated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!