Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel, mutations of which cause cystic fibrosis, a disease characterized by defective Cl(-) and HCO(3)(-) transport. Although >95% of all CF male patients are infertile because of congenital bilateral absence of the vas deferens (CBAVD), the question whether CFTR mutations are involved in other forms of male infertility is under intense debates. Here we report that CFTR is detected in both human and mouse sperm. CFTR inhibitor or antibody significantly reduces the sperm capacitation, and the associated HCO(3)(-)-dependent events, including increases in intracellular pH, cAMP production and membrane hyperpolarization. The fertilizing capacity of the sperm obtained from heterozygous CFTR mutant mice is also significantly lower compared with that of the wild-type. These results suggest that CFTR in sperm may be involved in the transport of HCO(3)(-) important for sperm capacitation and that CFTR mutations with impaired CFTR function may lead to reduced sperm fertilizing capacity and male infertility other than CBAVD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1887595PMC
http://dx.doi.org/10.1073/pnas.0609253104DOI Listing

Publication Analysis

Top Keywords

cystic fibrosis
12
fertilizing capacity
12
fibrosis transmembrane
8
transmembrane conductance
8
conductance regulator
8
sperm fertilizing
8
capacity male
8
cftr
8
cftr mutations
8
male infertility
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!