Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Context: There is little information regarding the regulation of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) enzymes in skeletal muscle in the setting of type 2 diabetes.
Objective: Our objective was to investigate whether there is differential mRNA expression and enzyme activity of 11beta-HSD1 and 11beta-HSD2 in the skeletal muscle of diabetic subjects compared with controls at baseline and in response to dexamethasone.
Design: Participants underwent muscle biopsy of vastus lateralis at baseline and after dexamethasone.
Setting: The study took place at a university teaching hospital.
Participants: Twelve subjects with type 2 diabetes and 12 age- and sex-matched controls participated.
Intervention: Subjects were given oral dexamethasone, 4 mg/d for 4 d.
Main Outcome Measures: We assessed 11beta-HSD1, 11beta-HSD2, and H6PDH mRNA levels by quantitative RT-PCR and enzyme activity by percent conversion of [(3)H]cortisone and [(3)H]cortisol, respectively.
Results: At baseline, mRNA levels were similar in diabetic and control subjects for 11beta-HSD1, 11beta-HSD2, and H6PDH. 11beta-HSD1 activity was reduced in diabetic subjects (percent conversion of [(3)H]cortisone to [(3)H]cortisol was 11.4 +/- 2.5% vs. 18.5 +/- 2.2%; P = 0.041), and 11beta-HSD2 enzyme activity was higher in diabetic subjects (percent conversion of [(3)H]cortisone to [(3)H]cortisol was 17.2 +/- 2.6% vs. 9.2 +/- 1.3%; P = 0.012). After dexamethasone, 11beta-HSD1 mRNA increased in both groups (P < 0.001), whereas 11beta-HSD2 mRNA decreased (P = 0.002). 11beta-HSD1 activity increased in diabetic subjects (P = 0.021) but not in controls, whereas 11beta-HSD2 activity did not change in either group. At baseline, there was a significant negative correlation between 11beta-HSD1 and 11beta-HSD2 enzyme activity (r = -0.463; P = 0.026).
Conclusions: The activities of skeletal muscle 11beta-HSD1 and 11beta-HSD2 are altered in diabetes, which together may reduce intracellular cortisol generation, potentially conferring metabolic protection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/jc.2006-2729 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!