The goal of articular cartilage tissue engineering is to provide cartilaginous constructs to replace abnormal cartilage. We have evaluated the chondroprogenitor clonal cell line RCJ3.1C5.18 (C5.18) as a model to guide the development of appropriate scaffolds for tissue engineering. Rapid degradation of fibrin hydrogels was observed after encapsulation of C5.18 cells. The enzymes responsible for this fibrin gel breakdown were characterized to control their activity and regulate gel stability. Western blotting, confirming zymography, revealed bands due to matrix metalloproteinases (MMP-2, MMP-3) that are secreted concomitantly with fibrin hydrogels breakdown. High plasmin activity was detected in conditioned media during hydrogel breakdown but not in the confluent cells before encapsulation. Reverse transcriptase polymerase chain reaction indicated the expression of MMP-2, -3, and -9 and plasminogen in the cells. MMP-9 was 100 times higher at day 1, whereas MMP-2 started to increase and reached its maximum level by day 7. Aprotinin, a known serine protease inhibitor, and galardin (GM6001), a potent MMP inhibitor, in combination or separately, prevented the breakdown of fibrin-C5.18 hydrogels, whereas only the combination of both promoted the accumulation of extracellular matrix. These findings suggest that plasmin and MMPs contribute independently to fibrin hydrogel breakdown, but that either enzyme can achieve extracellular matrix breakdown.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.2006.0354DOI Listing

Publication Analysis

Top Keywords

tissue engineering
12
fibrin hydrogels
8
hydrogel breakdown
8
extracellular matrix
8
breakdown
6
fibrin
5
characterization inhibition
4
inhibition fibrin
4
fibrin hydrogel-degrading
4
hydrogel-degrading enzymes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!