Following experimental traumatic brain injury (TBI), a rapid and significant necrosis occurs at the site of injury which coincides with significant mitochondrial dysfunction. The present study is driven by the hypothesis that TBI-induced glutamate release increases mitochondrial Ca(2+)cycling/overload, ultimately leading to mitochondrial dysfunction. Based on this premise, mitochondrial uncoupling during the acute phases of TBI-induced excitotoxicity should reduce mitochondrial Ca(2+) uptake (cycling) and reactive oxygen species (ROS) production since both are mitochondrial membrane potential dependent. In the present study, we utilized a cortical impact model of TBI to assess the potential use of mitochondrial uncouplers (2,4-DNP, FCCP) as a neuroprotective therapy. Young adult male rats were intraperitoneally administered vehicle (DMSO), 2,4-DNP (5 mg/kg), or FCCP (2.5 mg/kg) at 5 min post-injury. All animals treated with the uncouplers demonstrated a significant reduction in the amount of cortical damage and behavioral improvement following TBI. In addition, mitochondria isolated from the injured cortex at 3 or 6 h post-injury demonstrated that treatment with the uncouplers significantly improved several parameters of mitochondrial bioenergetics. These results demonstrate that post-injury treatment with mitochondrial uncouplers significantly (p < 0.01) increases cortical tissue sparing ( approximately 12%) and significantly (p< 0.01) improves behavioral outcome following TBI. The mechanism of neuroprotection most likely involves the maintenance of mitochondrial homeostasis by reducing mitochondrial Ca(2+) loading and subsequent mitochondrial dysfunction. These results further implicate mitochondrial dysfunction as an early event in the pathophysiology of TBI and that targeting acute mitochondrial events can result in long-term neuroprotection and improve behavioral outcome following brain injury.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2006.3673DOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
16
mitochondrial
15
mitochondrial uncouplers
12
behavioral outcome
12
brain injury
12
tissue sparing
8
improves behavioral
8
traumatic brain
8
mitochondrial ca2+
8
uncouplers
5

Similar Publications

Cardiovascular diseases (CVDs) are the leading cause of mortality among individuals with noncommunicable diseases worldwide. Obesity is associated with an increased risk of developing cardiovascular disease (CVD). Mitochondria are integral to the cardiovascular system, and it has been reported that mitochondrial transfer is associated with the pathogenesis of multiple CVDs and obesity.

View Article and Find Full Text PDF

Background/aim: Silicosis, the most severe type of occupational pneumoconiosis, leads to diffuse pulmonary fibrosis without specific therapy. Ferroptosis is triggered by reactive oxygen species (ROS) and Fe overload-induced lipid peroxidation, which is involved in the progression of pulmonary fibrosis. As an important coenzyme in the process of aerobic respiration, Coenzyme Q10 (CoQ10) can enhance mitochondrial function and energy supply and reduce malondialdehyde (MDA) to limit the risk of fibrosis.

View Article and Find Full Text PDF

CD147 has the potential to serve as a specific target with therapeutic characteristics in several respiratory diseases. Studies have demonstrated that CD147 regulates levels of oxidative phosphorylation (OXPHOS) through the process of mitochondrial translocations. However, there is still limited insight in the distinct mechanism of CD147 in asthmatic macrophages.

View Article and Find Full Text PDF

Investigating the Effect of Capric Acid on Antibiotic-Induced Autism-Like Behavior in Rodents.

Dev Neurobiol

January 2025

Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.

Owing to the high prevalence of gastrointestinal dysfunction in patients, the gut-brain axis is considered to play a vital role in neurodevelopment diseases. Recent pieces of evidence have pointed to the usage of antibiotics at an early developmental stage to be a causative factor in autism due to its ability to induce critical changes in the gut microbiota. The purpose of the study is to determine the neuroprotective effect of capric acid (CA) on autism in antibiotic-induced gut dysbiosis in rodents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!