Human Pin1 is a key regulator of cell-cycle progression and plays growth-promoting roles in human cancers. High-affinity inhibitors of Pin1 may provide a unique opportunity for disrupting oncogenic pathways. Here we report two high-resolution X-ray crystal structures of human Pin1 bound to non-natural peptide inhibitors. The structures of the bound high-affinity peptides identify a type-I beta-turn conformation for Pin1 prolyl peptide isomerase domain-peptide binding and an extensive molecular interface for high-affinity recognition. Moreover, these structures suggest chemical elements that may further improve the affinity and pharmacological properties of future peptide-based Pin inhibitors. Finally, an intramolecular hydrogen bond observed in both peptide complexes mimics the cyclic conformation of FK506 and rapamycin. Both FK506 and rapamycin are clinically important inhibitors of other peptidyl-prolyl cis-trans isomerases. This comparative discovery suggests that a cyclic peptide polyketide bridge, like that found in FK506 and rapamycin or a similar linkage, may significantly improve the binding affinity of structure-based Pin1 inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2692202PMC
http://dx.doi.org/10.1021/cb7000044DOI Listing

Publication Analysis

Top Keywords

human pin1
12
fk506 rapamycin
12
pin1
6
peptide
5
inhibitors
5
structural basis
4
high-affinity
4
basis high-affinity
4
high-affinity peptide
4
peptide inhibition
4

Similar Publications

The protein tyrosine phosphatase Lyp/PTPN22 drives TNFα-induced priming of superoxide anions production by neutrophils and arthritis.

Free Radic Biol Med

December 2024

INSERM-U1149, CNRS-ERL8252, Université de Paris-Cité, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, DHU FIRE, Faculté de Médecine, Site Xavier Bichat, Paris, France. Electronic address:

Neutrophils are essential for host defense against infections, but they also play a key role in acute and chronic inflammation. The protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene encodes the lymphoid-specific tyrosine phosphatase (Lyp) and a genetic single-nucleotide polymorphism of PTPN22 rs2476601 (R620W) has been associated with several human autoimmune diseases, including rheumatoid arthritis (RA). Here, we investigated the role of Lyp in TNFα-induced priming of neutrophil ROS production and in the development of arthritis using new selective Lyp inhibitors.

View Article and Find Full Text PDF

The mechanisms of Pin1 as targets for cancer therapy.

Front Immunol

December 2024

Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China.

Targeted therapy has considerable promise for the effective eradication of cancer at the primary tumor site prior to subsequent metastasis. Using this therapeutic approach, gaining an understanding of mechanistic cancer models is essential for facilitating the inhibition or suppression of tumor growth. Among different oncogenes and proteins, the protein interacting with never-in-mitosis kinase-1 (Pin1) is particularly important.

View Article and Find Full Text PDF

Loss-of-function mutations in the human gene encoding the neuron-specific Ca channel Ca2.1 are linked to the neurological disease episodic ataxia type 2 (EA2), as well as neurodevelopmental disorders such as developmental delay and developmental epileptic encephalopathy. Disease-associated Ca2.

View Article and Find Full Text PDF

Peptidyl-prolyl cis/trans isomerase Pin1 occupies a prominent role in preventing the development of certain malignant tumors. Pin1 is considered a target for the treatment of related malignant tumors, so the identification of novel Pin1 inhibitors is particularly urgent. In this study, we preliminarily predicted eight candidates from FDA-approved drug database as the potential Pin1 inhibitors through virtual screening combined with empirical screening.

View Article and Find Full Text PDF

Corrigendum to "Cobalt induces neurodegenerative damages through Pin1 inactivation in mice and human neuroglioma cells" [J Hazard Mater 419 (2021) 126378].

J Hazard Mater

January 2025

Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!